Nothing
context("pcairPartition tests")
.testKinGds <- function(x, file) {
showfile.gds(closeall=TRUE, verbose=FALSE)
gds <- gdsfmt::createfn.gds(file)
gdsfmt::add.gdsn(gds, "sample.id", colnames(x))
gdsfmt::add.gdsn(gds, "kinship", x)
gdsfmt::closefn.gds(gds)
gdsfmt::openfn.gds(file)
}
.cleanup <- function(x, file) {
gdsfmt::closefn.gds(x)
unlink(file)
}
test_that("name errors", {
# load saved matrix of KING-robust estimates
data("HapMap_ASW_MXL_KINGmat")
newMat <- HapMap_ASW_MXL_KINGmat
colnames(newMat) <- rownames(newMat) <- NULL
expect_error(pcairPartition(kinobj = newMat, divobj = newMat, verbose=FALSE),
"colnames must be provided for kinobj")
expect_warning(pcairPartition(kinobj = HapMap_ASW_MXL_KINGmat, divobj = HapMap_ASW_MXL_KINGmat, unrel.set = 1:100, verbose=FALSE),
"some samples in unrel.set are not in kinobj or divobj")
expect_warning(pcairPartition(kinobj = HapMap_ASW_MXL_KINGmat, divobj = NULL, unrel.set = 1:100, verbose=FALSE),
"some samples in unrel.set are not in kinobj or divobj")
})
test_that("kinobj matrix, divobj gds", {
data("HapMap_ASW_MXL_KINGmat")
gdsfile <- tempfile()
divobj <- .testKinGds(HapMap_ASW_MXL_KINGmat, gdsfile)
mypart <- pcairPartition(kinobj = HapMap_ASW_MXL_KINGmat, divobj = divobj, verbose=FALSE)
expect_equal(length(mypart$rels),76)
expect_equal(length(mypart$unrels),97)
.cleanup(divobj, gdsfile)
})
test_that("kinobj gds, divobj matrix", {
data("HapMap_ASW_MXL_KINGmat")
gdsfile <- tempfile()
kinobj <- .testKinGds(HapMap_ASW_MXL_KINGmat, gdsfile)
mypart <- pcairPartition(kinobj = kinobj, divobj = HapMap_ASW_MXL_KINGmat, verbose=FALSE)
expect_equal(length(mypart$rels),76)
expect_equal(length(mypart$unrels),97)
.cleanup(kinobj, gdsfile)
})
test_that("matrix and gds give same results", {
data("HapMap_ASW_MXL_KINGmat")
gdsfile <- tempfile()
kinobj <- .testKinGds(HapMap_ASW_MXL_KINGmat, gdsfile)
mypart.mat <- pcairPartition(kinobj = HapMap_ASW_MXL_KINGmat, divobj = HapMap_ASW_MXL_KINGmat, verbose=FALSE)
mypart.gds <- pcairPartition(kinobj = kinobj, divobj = kinobj, verbose=FALSE)
expect_equal(mypart.mat, mypart.gds)
.cleanup(kinobj, gdsfile)
})
test_that("kinobj and divobj both Matrix", {
data("HapMap_ASW_MXL_KINGmat")
Mat <- Matrix(HapMap_ASW_MXL_KINGmat)
mypart <- pcairPartition(kinobj = Mat, divobj = Mat, verbose=FALSE)
expect_equal(length(mypart$rels),76)
expect_equal(length(mypart$unrels),97)
})
test_that("apply on Matrix", {
x <- Matrix(matrix(1, nrow=10, ncol=20, dimnames=list(1:10,1:20)))
MARGIN <- 1
FUN <- sum
selection <- list(1:5, 1:10)
chk <- apply(x[selection[[1]], selection[[2]]], MARGIN = MARGIN, FUN = FUN)
expect_equal(.apply(x, MARGIN, FUN, selection), chk)
MARGIN <- 2
chk <- apply(x[selection[[1]], selection[[2]]], MARGIN = MARGIN, FUN = FUN)
expect_equal(.apply(x, MARGIN, FUN, selection), chk)
})
.apply.no.blocks <- function(x, MARGIN, FUN, selection) {
x <- x[selection[[1]], selection[[2]]]
ans <- list()
if (MARGIN == 1) {
for (i in 1:nrow(x)) {
ans[[i]] <- FUN(x[i,])
}
names(ans) <- rownames(x)
} else if (MARGIN == 2) {
for (i in 1:ncol(x)) {
ans[[i]] <- FUN(x[,i])
}
names(ans) <- colnames(x)
} else {
stop("MARGIN must be 1 or 2")
}
simplify2array(ans)
}
test_that("apply on big Matrix", {
x <- Matrix(matrix(1, nrow=1000, ncol=2000, dimnames=list(1:1000,1:2000)))
MARGIN <- 1
FUN <- sum
selection <- list(1:1000, 1:2000)
chk <- apply(x[selection[[1]], selection[[2]]], MARGIN = MARGIN, FUN = FUN)
expect_equal(.apply(x, MARGIN, FUN, selection, maxelem=5e5), chk)
## takes too long
## expect_equal(.apply(x, MARGIN, FUN, selection, maxelem=5e5),
## .apply.no.blocks(x, MARGIN, FUN, selection))
MARGIN <- 2
chk <- apply(x[selection[[1]], selection[[2]]], MARGIN = MARGIN, FUN = FUN)
expect_equal(.apply(x, MARGIN, FUN, selection, maxelem=5e5), chk)
})
test_that("no unrelated", {
data("HapMap_ASW_MXL_KINGmat")
Mat <- Matrix(HapMap_ASW_MXL_KINGmat)
thresh <- min(Mat) - 0.1
expect_error(pcairPartition(kinobj = Mat, divobj = Mat,
kin.thresh=thresh, div.thresh=thresh,
verbose=FALSE),
"All samples related")
})
test_that("no related", {
Mat <- Diagonal(100)
dimnames(Mat) <- list(1:100, 1:100)
mypart <- pcairPartition(kinobj = Mat, divobj = Mat, verbose=FALSE)
expect_true(is.null(mypart$rels))
expect_equal(as.character(1:100), mypart$unrels)
})
test_that("all same number of relatives", {
x <- matrix(c(0.5,0.25,0.25,0.5), nrow = 2)
Mat <- bdiag(list(x,x,x,x,x))
dimnames(Mat) <- list(1:10, 1:10)
mypart <- pcairPartition(kinobj = Mat, divobj = Mat, verbose=FALSE)
expect_equal(mypart$rels, as.character(seq(1,9,2)))
expect_equal(mypart$unrels, as.character(seq(2,10,2)))
})
test_that("apply a function with empty results on large matrix", {
x <- Matrix(matrix(1, nrow=1000, ncol=2000, dimnames=list(1:1000,1:2000)))
MARGIN <- 1
FUN <- function(x){which(x < -1)}
selection <- list(1:1000, 1:2000)
tmp <- .apply(x, MARGIN, FUN, selection, maxelem=5e5)
expect_equal(length(tmp), 0)
})
test_that("no divobj", {
x <- matrix(c(0.5,0.25,0.25,0.5), nrow = 2)
Mat <- bdiag(list(x,x,x,x,x))
dimnames(Mat) <- list(1:10, 1:10)
mypart <- pcairPartition(kinobj = Mat, verbose=FALSE)
expect_equal(mypart$rels, as.character(seq(1,9,2)))
expect_equal(mypart$unrels, as.character(seq(2,10,2)))
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.