Nothing
test_that("hyper() - refinement hyper category test",{
expect_true(all.equal(hyper(c(3,4,6), c(12,12,12), c(0,2,12), c(19,19,19)), c(0.0489433, 0.1366560, 0.863453), tolerance=1.5e-6))
expect_true(all.equal(hyper(c(3,4,6), c(12,12,12), c(0,2,12), c(19,19,19), under=TRUE), c(1, 0.978307, 0.362281), tolerance=1.5e-6))
})
test_that("hyper_nodes() - refinement hyper category test for all leaves",{
scores_root = structure(c(12, 17641), .Dim = 1:2, .Dimnames = list("GO:0008150",
NULL))
# empty and non-empty leaves
anno_nodes = structure(list(go_id = c("GO:0072205", "GO:0072205", "GO:0072205",
"GO:0072205", "GO:0072205", "GO:0072205", "GO:0072205", "GO:0072205",
"GO:0072221", "GO:0072221", "GO:0072221", "GO:0072221", "GO:0072221"
), gene = c("AQP2", "BMP4", "CALB1", "DLG5", "PAX2", "PAX8",
"PKD1", "WNT7B", "CALB1", "PAX2", "PAX8", "POU3F3", "UMOD"),
scores = c(0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0)), row.names = 17684:17696, class = "data.frame")
empty_nodes = c("nodeA", "nodeB")
pvals = hyper_nodes(anno_nodes, empty_nodes, scores_root)
expected = structure(list(go_id = c("GO:0072205", "GO:0072221", "nodeA",
"nodeB"), new_p = c(1.18340981614424e-05, 4.23125608013295e-06,
1, 1)), class = "data.frame", row.names = c(NA, -4L))
expect_true(all.equal(pvals, expected))
# only non-empty leaves
pvals = hyper_nodes(anno_nodes, character(0), scores_root)
expected = structure(list(go_id = c("GO:0072205", "GO:0072221"), new_p = c(1.18340981614424e-05,
4.23125608013295e-06)), class = "data.frame", row.names = c(NA, -2L))
expect_true(all.equal(pvals, expected[1:2,]))
# only empty leaves
anno_nodes = structure(list(go_id = character(0), gene = character(0), scores = numeric(0)),
row.names = integer(0), class = "data.frame")
pvals = hyper_nodes(anno_nodes, empty_nodes, scores_root)
expected = structure(list(go_id = c("nodeA", "nodeB"), new_p = c(1, 1)),
class = "data.frame", row.names = c(NA, -2L))
expect_true(all.equal(pvals, expected))
})
test_that("wilcox() - refinement wilcoxon category test",{
anno_genes_node = structure(list(gene = c("AGTR1", "BTBD3", "CACNG2", "CALB1",
"ENGASE", "G6PD", "GCK", "GYG1", "GYS1", "HK2", "PAX2", "PYGL",
"SLC2A8", "UGP2"), score = c(14L, 15L, 10L, 5L, 21L, 23L, 27L,
11L, 30L, 29L, 12L, 26L, 20L, 22L)), class = "data.frame", row.names = c(NA,
14L))
anno_genes_root = structure(list(gene = c("AGTR1", "ANO1", "BTBD3", "CACNG2", "CALB1",
"ENGASE", "G6PD", "GCK", "GYG1", "GYS1", "HK2", "MTUS1", "PAX2",
"PYGL", "SLC2A8", "UGP2", "ZWINT"), score = c(14L, 9L, 15L, 10L,
5L, 21L, 23L, 27L, 11L, 30L, 29L, 13L, 12L, 26L, 20L, 22L, 28L
)), class = "data.frame", row.names = c(NA, 17L))
p_high_rank = wilcox(anno_genes_node, anno_genes_root)
p_low_rank = wilcox(anno_genes_node, anno_genes_root, low=TRUE)
expect_true(all.equal(c(p_high_rank, p_low_rank), c(0.329622, 0.714625), tolerance=1.5e-6))
})
test_that("wilcox_nodes() - refinement hyper category test for all leaves",{
scores_root = structure(list(gene = c("GYG1", "MTUS1", "NCAPG", "NGFR", "NXPH4",
"PAX2"), scores = c(30L, 10L, 9L, 12L, 24L, 22L)), row.names = 21:26, class = "data.frame")
# empty and non-empty leaves
anno_nodes = structure(list(go_id = c("GO:0003824", "GO:0003824", "GO:0008194"
), gene = c("GYG1", "PAX2", "GYG1"), scores = c(30L, 22L, 30L
), term_id = c(3010L, 3010L, 6655L), root_id = c("GO:0003674",
"GO:0003674", "GO:0003674")), row.names = c(27L, 28L, 67L), class = "data.frame")
empty_nodes = c("nodeA", "nodeB")
pvals = wilcox_nodes(anno_nodes, empty_nodes, scores_root)
expected = structure(list(go_id = c("GO:0003824", "GO:0008194", "nodeA",
"nodeB"), new_p = c(0.123579986605954, 0.120783293484486, 1,
1)), row.names = c(NA, -4L), class = "data.frame")
expect_true(all.equal(pvals, expected))
# only non-empty leaves
pvals = wilcox_nodes(anno_nodes, character(0), scores_root)
expected = structure(list(go_id = c("GO:0003824", "GO:0008194"), new_p = c(0.123579986605954,
0.120783293484486)), class = "data.frame", row.names = c(NA, -2L))
expect_true(all.equal(pvals, expected))
# only empty leaves
anno_nodes = structure(list(go_id = character(0), gene = character(0), scores = numeric(0)),
row.names = integer(0), class = "data.frame")
pvals = wilcox_nodes(anno_nodes, empty_nodes, scores_root)
expected = structure(list(go_id = c("nodeA", "nodeB"), new_p = c(1, 1)),
class = "data.frame", row.names = c(NA, -2L))
expect_true(all.equal(pvals, expected))
})
test_that("binom() - refinement binomial category test",{
a_node = 148
b_node = 176
a_root = 289
b_root = 315
p_high_a = binom(a_node, b_node, a_root, b_root)
p_high_b = binom(a_node, b_node, a_root, b_root, low=TRUE)
expect_true(all.equal(c(p_high_a, p_high_b), c(0.798633, 0.234112), tolerance=1.5e-6))
})
test_that("conti() - contingency table category test",{
# high A/B
abcd = c(55, 17, 95, 31)
p_high_ab = conti(abcd[1], abcd[2], abcd[3], abcd[4])
p_high_cd = conti(abcd[1], abcd[2], abcd[3], abcd[4], low=TRUE)
expect_true(all.equal(c(p_high_ab, p_high_cd), c(0.8754846, 1), tolerance=1.5e-6))
# high C/D
abcd = c(166, 63, 320, 75)
p_high_ab = conti(abcd[1], abcd[2], abcd[3], abcd[4])
p_high_cd = conti(abcd[1], abcd[2], abcd[3], abcd[4], low=TRUE)
expect_true(all.equal(c(p_high_ab, p_high_cd), c(1, 0.01340939), tolerance=1.5e-6))
# Fisher
abcd = c(29, 1, 54, 22)
p_high_ab = conti(abcd[1], abcd[2], abcd[3], abcd[4])
p_high_cd = conti(abcd[1], abcd[2], abcd[3], abcd[4], low=TRUE)
expect_true(all.equal(c(p_high_ab, p_high_cd), c(0.003322334, 1), tolerance=1.5e-6))
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.