detect_modules: Modules detection in a network

Description Usage Arguments Value Examples

View source: R/net_and_modules.R

Description

Detect the modules by hierarchical clustering .

Usage

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
detect_modules(
  data_expr,
  network,
  min_module_size = min(20, ncol(data_expr)/2),
  clustering_th = NULL,
  merge_close_modules = TRUE,
  merge_threshold = 0.75,
  detailled_result = TRUE,
  pam_respects_dendro = FALSE,
  ...
)

Arguments

data_expr

matrix or data.frame or SummarizedExperiment, expression data with genes as column and samples as row.

network

matrix or data.frame, strengh of gene co-expression (edge values).

min_module_size

integer, lowest number of gene allowed in a module. If none provided, estimated.

clustering_th

float, threshold to be used by the clustering method. For now cutreeDynamic.

merge_close_modules

boolean, does closest modules (based on eigengene) should be merged together.

merge_threshold

float, eigengenes correlation value over which close modules will be merged. Must be in ]0;1[. See mergeCloseModules

detailled_result

boolean, does pre-merge modules (if applicable) and dendrogram included in output.

pam_respects_dendro

boolean, If TRUE, the Partitioning Around Medoids (PAM) stage will respect the dendrogram in the sense that objects and small clusters will only be assigned to clusters that belong to the same branch that the objects or small clusters being assigned belong to.

...

any other parameter compatible with mergeCloseModules

Value

list containing modules detected, modules_eigengenes, and if asked for, modules pre-merge and dendrograms of genes and merged modules

Examples

1
2
3
df <- kuehne_expr[1:24, 1:350]
net <- build_net(df, n_threads = 1)
detect_modules(df, net$network)

GWENA documentation built on Feb. 17, 2021, 2:01 a.m.