Nothing
#####################################################################
## This program is distributed in the hope that it will be useful, ##
## but WITHOUT ANY WARRANTY; without even the implied warranty of ##
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ##
## GNU General Public License for more details. ##
#####################################################################
#' @name Models
#' @aliases Models
#' @title Model objective functions
#'
#' @description
#' These functions take in the dose-response data and the model parameters, and
#' return a likelyhood value. They are intended to be optimized using
#' \code{\link{constrOptim}} in the \code{\link{gtoxFit}} function.
#'
#' @param p Numeric, the parameter values. See details for more information.
#' @param lconc Numeric, the log10 concentration values
#' @param resp Numeric, the response values
#'
#' @details
#' These functions produce an estimated value based on the model and given
#' parameters for each observation. Those estimated values are then used with
#' the observed values and a scale term to calculate the log-likelyhood.
#'
#' Let \eqn{t(z,\nu)} be the Student's t-ditribution with \eqn{\nu} degrees of
#' freedom, \eqn{y_{i}}{y[i]} be the observed response at the \eqn{i^{th}}{ith}
#' observation, and \eqn{\mu_{i}}{\mu[i]} be the estimated response at the
#' \eqn{i^{th}}{ith} observation. We calculate \eqn{z_{i}}{z[i]} as:
#' \deqn{
#' z_{i} = \frac{y_{i} - \mu_{i}}{e^\sigma}
#' }{
#' z[i] = (y[i] - \mu[i])/e^\sigma
#' }
#' where \eqn{\sigma} is the scale term. Then the log-likelyhood is:
#' \deqn{
#' \sum_{i=1}^{n} [ln(t(z_{i}, 4)) - \sigma]
#' }{
#' sum_{i=1}^{n} [ln(t(z[i], 4)) - \sigma]}
#' Where \eqn{n} is the number of observations.
#'
#' @return The log-likelyhood.
NULL
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.