fitMuDispGeneImpulse: Multiple initilalisation wrapper for impulse mean model

Description Usage Arguments Value Author(s) See Also

View source: R/srcLineagePulse_fitMeanDispersion.R

Description

Multiple initialisation are tried for the impulse model. Therefore, this wrapper sits ontop of fitContinuousZINB() in the fitting hierarchy and wraps multiple initialisations at the level of one gene.

Usage

1
2
3
fitMuDispGeneImpulse(vecCounts, vecImpulseParamGuess, lsvecBatchParamGuessMu,
  lsMuModelGlobal, vecDispGuess, lsvecBatchParamGuessDisp, lsDispModelGlobal,
  matDropoutLinModel, vecPiConstPredictors, lsDropModelGlobal, vecPiParam)

Arguments

vecCounts

(count vector number of cells) Observed read counts, not observed are NA.

vecImpulseParamGuess

(numeric vector number of impulse model parameters) Initialisation for impulse model.

lsvecBatchParamGuessMu

(list) Object containing initialisation for mean parameter batch correction model.

lsMuModelGlobal

(list) Object containing meta-data of gene-wise mean parameter models.

vecDispGuess

(numeric vector number of dispersion model parameters) Initialisation for dispersion model.

lsvecBatchParamGuessDisp

(list) Object containing initialisation for dispersion parameter batch correction model.

lsDispModelGlobal

(list) Object containing meta-data of gene-wise dispersion parameter models.

matDropoutLinModel

(matrix number of cells x number of predictors) Logistic linear model parameters of the dropout rate as a function of the mean and constant gene-wise coefficients.

vecPiConstPredictors

(numeric vector constant gene-wise coefficients) Constant gene-wise coeffiecients, i.e. predictors which are not the offset and not the mean parameter.

lsDropModelGlobal

(list) Object containing meta-data of cell-wise drop-out parameter models.

vecPiParam

(numeric vector number of observations) Pre-evaluated drop-out model if model is not a function on the mean parameter to be fit.

Value

list

Author(s)

David Sebastian Fischer

See Also

Called by mean-dispersion co-estimation wrapper fitZINBMuDisp. Calls optimisation wrapper fitContinuousZINB for each initialisation.


LineagePulse documentation built on Nov. 8, 2020, 7:01 p.m.