Nothing
# Plotting functions to visualize outputs of MIRA
# Visualize MIRA profiles and MIRA scores
#' Plot summary methylation profile
#'
#' Plot one or multiple methylation profiles. Displays each region set
#' in a different subplot.
#' If you only want to plot certain region sets,
#' subset with the `featID` parameter.
#'
#' @param binnedRegDT A datatable with specific column names containing:
#' bin numbers(binnedRegionDT column),
#' aggregated methylation values (methylProp column),
#' name of the region set (featureID column),
#' case/control column (sampleType column),
#' sample name (sampleName column).
#' @param featID Region set names in a single string or vector of strings.
#' @param plotType Line or jitter (ggplot2).
#' @param colBlindOption If TRUE, function will plot with a color blind
#' friendly palette which could be helpful when plotting multiple colors.
#' @param sampleTypeColName character object. The name of the column that
#' contains sample type or condition information (eg case vs control).
#' Line color will be assigned based on this if it is present and there are
#' more than two unique sample types.
#'
#' @return A plot of class "gg"/ "ggplot" that shows MIRA profiles
#' @examples
#' data("exampleBins", package = "MIRA")
#' MIRAplot <- plotMIRAProfiles(binnedRegDT = exampleBins)
#'
#' @export
plotMIRAProfiles <- function(binnedRegDT,
featID = unique(binnedRegDT[, featureID]),
plotType = "line",
colBlindOption = FALSE,
sampleTypeColName="sampleType"){
binNum <- max(binnedRegDT[, bin])
setkey(binnedRegDT, featureID)
binPlot <- ggplot(data = binnedRegDT[featID],
mapping = aes(x = factor(bin),
y = methylProp * 100)) +
theme_classic() + ylim(c(0, 100)) +
geom_hline(yintercept=c(0), alpha=.2) +
ylab("DNA Methylation (%)") +
xlab("Genome Regions Surrounding Sites") +
scale_x_discrete(labels=xAxisForRegionPlots(binNum))
if (colBlindOption) {
binPlot <- binPlot + scale_color_brewer(name = "Sample Type",
palette = "Dark2")
} else {
binPlot <- binPlot + scale_color_brewer(name = "Sample Type",
palette = "Set1")
}
if (!(sampleTypeColName %in% names(binnedRegDT))) {
# if no sampleType column then all lines/points will be black
warning(cleanws("If you want to split up sample types by
color use sampleTypeColName parameter."))
# no color given if no sampleType
if (plotType == "line") {
binPlot <- binPlot +
geom_line(aes(group = sampleName)) +
facet_wrap(~featureID)
} else if (plotType == "jitter") {
binPlot <- binPlot + geom_jitter(alpha = .4) +
facet_wrap(~featureID)
} else {
stop('The only supported values for plotType are "line" and "jitter"')
}
} else {
if (plotType == "line") {
binPlot <- binPlot +
geom_line(aes(col = get(sampleTypeColName), group = sampleName)) +
facet_wrap(~featureID)
} else if (plotType == "jitter") {
binPlot <- binPlot + geom_jitter(aes(col = get(sampleTypeColName)), alpha = .4) +
facet_wrap(~featureID)
} else {
stop('The only supported values for plotType are "line" and "jitter"')
}
}
return(binPlot)
}
# A function to get right x axis numbers on the plotMIRAProfiles() plots
xAxisForRegionPlots <- function(binNum) {
if ((binNum %% 2) == 0) { # even binNum
tmp <- c((-1 * binNum / 2):-1, 1:(binNum / 2)) # no zero
xAxis <- c(tmp[1], rep("", (binNum - 4) / 2), -1, 1,
rep("", (binNum - 4) / 2), tmp[binNum])
} else if ((binNum %% 2) == 1) { # odd binNum
tmp <- (-1 * (binNum - 1) / 2):((binNum - 1) / 2)
xAxis <- c(tmp[1], rep("", (binNum - 3) / 2), 0,
rep("", (binNum - 3) / 2), tmp[binNum])
}
return(xAxis)
}
#' Plot MIRA scores and compare different conditions
#'
#' Splits up samples by sample type. Displays each region set
#' in a different subplot.
#' If you only want to plot certain region sets,
#' subset with the `featID` parameter.
#'
#' Due to the limited number
#' of colors in the palette, a warning will be issued if
#' there are too many (more than 9) region sets ('featureID's).
#'
#' @param scoreDT A datatable with the following columns:
#' score, featureID (names of region sets), ideally include 'sampleType'.
#' @param featID Region set name/names in a single string or vector of strings.
#' @param colBlindOption If TRUE, function will plot with a color blind
#' friendly palette which could be helpful when plotting multiple colors.
#' @return a plot of class "gg"/"ggplot" that shows MIRA scores
#' with geom_boxplot and geom_jitter (or geom_violin instead
#' of boxplot if no sampleType column is given).
#' @export
#' @examples
#' data(bigBinDT2)
#' exScores <- calcMIRAScore(bigBinDT2)
#' # adding annotation
#' sampleType <- rep(c("Ewing", "Muscle-related"), each = 24)
#' exScores <- cbind(exScores, sampleType)
#' exScorePlot <- plotMIRAScores(exScores)
plotMIRAScores <- function(scoreDT,
featID = unique(scoreDT[, featureID]),
colBlindOption = FALSE){
# the preferred option when 'sampleType' is a column
if ("sampleType" %in% colnames(scoreDT)) {
sampleTypeNum <- length(unique(scoreDT[, sampleType]))
setkey(scoreDT, featureID)
scorePlot <- ggplot(data = scoreDT[featID],
mapping = aes(x = sampleType,
y = score,
col = sampleType)) +
theme_classic() +
ylab("MIRA Score") + xlab("Sample Type") +
geom_boxplot(aes(fill = sampleType), alpha = 0.75) +
geom_jitter(data = scoreDT[featID],
mapping = aes(x = sampleType, y = score)) +
scale_color_manual(guide = FALSE, values = rep("black",
sampleTypeNum)) +
facet_wrap(~featureID)
if (colBlindOption) {
scorePlot <- scorePlot + scale_fill_brewer(name = "Sample Type",
palette="Dark2")
} else {
scorePlot <- scorePlot + scale_fill_brewer(name = "Sample Type",
palette="Set1")
}
} else {
# a less fancy plot when sampleType column is not present
setkey(scoreDT, featureID)
scorePlot <- ggplot(data = scoreDT[featID],
mapping = aes(x = "", y = score,
col = featureID)) +
theme_classic() +
theme(axis.title.x = element_blank(),
axis.ticks.x = element_blank()) +
ylab("MIRA Score") + # xlab("") +
geom_violin(aes(fill = featureID), alpha = 0.75) +
geom_jitter() +
scale_color_manual(guide = FALSE,
values = rep("black", length(featID))) +
facet_wrap(~featureID)
if (colBlindOption) {
scorePlot <- scorePlot + scale_fill_brewer(name = "Region Set",
palette="Dark2")
} else {
scorePlot <- scorePlot + scale_fill_brewer(name = "Region Set",
palette="Set1")
}
}
return(scorePlot)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.