Nothing
######################################
## Functions to perform predictions ##
######################################
#' @title Do predictions using a fitted MOFA model
#' @name predict
#' @description This function uses the factors and the corresponding weights to do data predictions.
#' @param object a \code{\link{MOFAmodel}} object.
#' @param views character vector with the view name(s), or numeric vector with the view index(es).
#' Default is "all".
#' @param factors character vector with the factor name(s) or numeric vector with the factor index(es).
#' Default is "all".
#' @param type type of prediction returned, either:
#' \itemize{
#' \item{\strong{response}:}{ gives the response vector, the mean for Gaussian and Poisson,
#' and success probabilities for Bernoulli.}
#' \item{\strong{link}:}{ gives the linear predictions.}
#' \item{\strong{inRange}:}{ rounds the fitted values of integer-valued distributions
#' (Poisson and Bernoulli) to the next integer.
#' This is the default option.}
#' }
#' @details Matrix factorization models generate a denoised and condensed low-dimensional representation
#' of the data which capture the main sources of heterogeneity of the data.
#' Such representation can be used to do predictions (data reconstruction) and imputation (see \code{\link{impute}}). \cr
#' For mathematical details, see the Methods section of the MOFA article.
#' @return Returns a list with data predictions.
#' @export
#' @examples
#' library(ggplot2)
#'
#' # Example on the CLL data
#' filepath <- system.file("extdata", "CLL_model.hdf5", package = "MOFAdata")
#' MOFA_CLL <- loadModel(filepath)
#'
#' # predict drug response data using all factors
#' predictedDrugs <- predict(MOFA_CLL, view="Drugs")
#'
#' # predict all views using all factors (default)
#' predictedAll <- predict(MOFA_CLL)
#'
#' # predict Mutation data using all factors, returning Bernoulli probabilities
#' predictedMutations <- predict(MOFA_CLL, view="Mutations", type="response")
#'
#' # predict Mutation data using all factors, returning binary classes
#' predictedMutationsBinary <- predict(MOFA_CLL, view="Mutations", type="inRange")
#'
#' # Compare the predictions with the true data
#' pred <- as.numeric(predictedAll$Drugs)
#' true <- as.numeric(getTrainData(MOFA_CLL)$Drugs)
#' qplot(pred,true) + geom_hex(bins=100) + coord_equal() +
#' geom_abline(intercept=0, slope=1, col="red")
#'
#' # Example on the scMT data
#' filepath <- system.file("extdata", "scMT_model.hdf5", package = "MOFAdata")
#' MOFA_scMT <- loadModel(filepath)
#'
#' # Predict all views using all factors (default)
#' predictedAll <- predict(MOFA_scMT)
#'
#' # Compare the predictions with the true data
#' view <- "RNA expression"
#' pred <- as.numeric(predictedAll[[view]])
#' true <- as.numeric(getTrainData(MOFA_scMT)[[view]])
#' qplot(pred,true) + geom_hex(bins=100) + coord_equal() +
#' geom_abline(intercept=0, slope=1, col="red")
predict <- function(object, views = "all", factors = "all",
type = c("inRange","response", "link")) {
# Sanity checks
if (!is(object, "MOFAmodel")) stop("'object' has to be an instance of MOFAmodel")
# Get views
if (is.numeric(views)) {
stopifnot(all(views <= getDimensions(object)[["M"]]))
views <- viewNames(object)[views]
} else {
if (paste0(views,sep="",collapse="") =="all") {
views = viewNames(object)
} else {
stopifnot(all(views%in%viewNames(object)))
}
}
# Get factors
if (paste0(factors,collapse="") == "all") {
factors <- factorNames(object)
} else if(is.numeric(factors)) {
factors <- factorNames(object)[factors]
} else {
stopifnot(all(factors %in% factorNames(object)))
}
# Get type of predictions wanted
type = match.arg(type)
# Collect weights
W <- getWeights(object, views=views, factors=factors)
# Collect factors
Z <- getFactors(object)[,factors]
Z[is.na(Z)] <- 0 # set missing values in Z to 0 to exclude from imputations
# Predict data based on MOFA model
# predictedData <- lapply(sapply(views, grep, viewNames(object)), function(viewidx){
predictedData <- lapply(views, function(i){
# calculate terms based on linear model
predictedView <- sweep(t(Z%*% t(W[[i]])),1, -FeatureIntercepts(object)[[i]]) # add intercept row-wise
# make predicitons based on underlying likelihood
lks <- ModelOptions(object)[["likelihood"]]
names(lks) <- viewNames(object)
if (type!="link") {
lk <- lks[i]
if (lk == "gaussian") {
predictedView <- predictedView
}
else if (lk == "bernoulli") {
predictedView <- (exp(predictedView)/(1+exp(predictedView)))
if (type=="inRange") predictedView <- round(predictedView)
} else if (lk == "poisson") {
predictedView <- log(1 + exp(predictedView))
if(type=="inRange") predictedView <- round(predictedView)
}
else {
stop(sprintf("Likelihood %s not implemented for imputation",lk))
}
}
predictedView
})
names(predictedData) <- views
return(predictedData)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.