Description Usage Arguments Value Author(s) References Examples
tool.coalesce
is utilized to merge and trim either overlapping
modules (containing shared genes) or overlapping genes (containing
shared markers)
1 | tool.coalesce(items, groups, rcutoff = 0, ncore = NULL)
|
items |
array of item identities |
groups |
array of group identities for items |
rcutoff |
maximum overlap not coalesced |
ncore |
minimum number of items required for trimming |
a data list with the following components:
CLUSTER |
cluster identities after merging and triming (a subset of group identities) |
ITEM |
item identities |
GROUPS |
comma separated overlapping group identities |
Ville-Petteri Makinen
Shu L, Zhao Y, Kurt Z, Byars SG, Tukiainen T, Kettunen J, Orozco LD, Pellegrini M, Lusis AJ, Ripatti S, Zhang B, Inouye M, Makinen V-P, Yang X. Mergeomics: multidimensional data integration to identify pathogenic perturbations to biological systems. BMC genomics. 2016;17(1):874.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 | ## read the coexpr module file as an example:
moddata <- tool.read(system.file("extdata",
"modules.mousecoexpr.liver.human.txt", package="Mergeomics"))
## let us find the overlapping ratio between first 10 modules in the file:
## to merge overlapping modules first collect member genes:
mod.names <- unique(moddata$MODULE)[1:min(length(unique(moddata$MODULE)),
10)]
moddata <- moddata[which(!is.na(match(moddata$MODULE, mod.names))),]
## Merge and trim overlapping modules.(max allowed overlap ratio is 0.33)
rmax <- 0.33
moddata$OVERLAP <- moddata$MODULE
moddata <- tool.coalesce(items=moddata$GENE, groups=moddata$MODULE,
rcutoff=rmax)
moddata$MODULE <- moddata$CLUSTER
moddata$GENE <- moddata$ITEM
moddata$OVERLAP <- moddata$GROUPS
moddata <- moddata[,c("MODULE", "GENE", "OVERLAP")]
moddata <- unique(moddata)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.