Nothing
test_kda.analyze <- function() {
library(RUnit)
library(Mergeomics)
job.kda <- list()
job.kda$label<-"HDLC"
## parent folder for results
job.kda$folder<-"Results"
## Input a network
## columns: TAIL HEAD WEIGHT
job.kda$netfile<-system.file("extdata","network.mouseliver.mouse.txt",
package="Mergeomics")
## Gene sets derived from ModuleMerge, containing two columns, MODULE,
## NODE, delimited by tab
job.kda$modfile<- system.file("extdata","mergedModules.txt",
package="Mergeomics")
## "0" means we do not consider edge weights while 1 is opposite.
job.kda$edgefactor<-0.0
## The searching depth for the KDA
job.kda$depth<-1
## 0 means we do not consider the directions of the regulatory
## interactions; while 1 is opposite.
job.kda$direction <- 1
job.kda$nperm <- 100 # the default value is 2000, use 100 for unit tests
## Let's run KDA!
job.kda <- kda.configure(job.kda)
job.kda <- kda.start(job.kda)
job.kda <- kda.prepare(job.kda)
job.kda <- kda.analyze(job.kda)
## compare the pvals with the expected ones:
## since we set the seed for random # generation, we know the exact
## results for our input sets:
## check Pvalues of the top KD
checkEqualsNumeric(as.numeric(sort(job.kda$results$P))[1],
1.610e-68, tolerance=1.0e-4)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.