Nothing
## ----eval = TRUE, message=FALSE-----------------------------------------------
library(MetaNeighbor)
library(SummarizedExperiment)
data(mn_data)
data(GOmouse)
## ----eval=TRUE,fig.width=4,fig.height=3, results='hide'-----------------------
AUROC_scores = MetaNeighbor(dat = mn_data,
experiment_labels = as.numeric(factor(mn_data$study_id)),
celltype_labels = metadata(colData(mn_data))[["cell_labels"]],
genesets = GOmouse,
bplot = TRUE)
## ----eval= TRUE---------------------------------------------------------------
head(AUROC_scores)
## ----eval = TRUE--------------------------------------------------------------
library(MetaNeighbor)
data(mn_data)
## ----eval = TRUE--------------------------------------------------------------
var_genes = variableGenes(dat = mn_data, exp_labels = mn_data$study_id)
head(var_genes)
## ----eval = TRUE--------------------------------------------------------------
length(var_genes)
## ----eval=TRUE----------------------------------------------------------------
celltype_NV = MetaNeighborUS(var_genes = var_genes,
dat = mn_data,
study_id = mn_data$study_id,
cell_type = mn_data$cell_type)
## ----eval=TRUE,fig.width=7,fig.height=6.5-------------------------------------
cols = rev(colorRampPalette(RColorBrewer::brewer.pal(11,"RdYlBu"))(100))
breaks = seq(0, 1, length=101)
gplots::heatmap.2(celltype_NV,
margins=c(8,8),
keysize=1,
key.xlab="AUROC",
key.title="NULL",
trace = "none",
density.info = "none",
col = cols,
breaks = breaks,
offsetRow=0.1,
offsetCol=0.1,
cexRow = 0.7,
cexCol = 0.7)
## ----eval = TRUE--------------------------------------------------------------
top_hits = topHits(cell_NV = celltype_NV,
dat = mn_data,
study_id = mn_data$study_id,
cell_type = mn_data$cell_type,
threshold = 0.9)
top_hits
## ----eval = TRUE, message=FALSE-----------------------------------------------
library(MetaNeighbor)
library(SummarizedExperiment)
data(mn_data)
data(GOmouse)
## ----eval = TRUE,fig.width=4,fig.height=3, results='hide'---------------------
AUROC_scores = MetaNeighbor(dat = mn_data,
experiment_labels = as.numeric(factor(mn_data$study_id)),
celltype_labels = metadata(colData(mn_data))[["cell_labels"]],
genesets = GOmouse,
bplot = TRUE,
fast_version = TRUE)
## ----eval = TRUE, fig.width = 7, fig.height = 6.5-----------------------------
var_genes = variableGenes(dat = mn_data, exp_labels = mn_data$study_id)
celltype_NV = MetaNeighborUS(var_genes = var_genes,
dat = mn_data,
study_id = mn_data$study_id,
cell_type = mn_data$cell_type,
fast_version = TRUE)
cols = rev(colorRampPalette(RColorBrewer::brewer.pal(11,"RdYlBu"))(100))
breaks = seq(0, 1, length=101)
gplots::heatmap.2(celltype_NV,
margins=c(8,8),
keysize=1,
key.xlab="AUROC",
key.title="NULL",
trace = "none",
density.info = "none",
col = cols,
breaks = breaks,
offsetRow=0.1,
offsetCol=0.1,
cexRow = 0.7,
cexCol = 0.7)
## ----eval = FALSE, message = FALSE--------------------------------------------
# library(SingleCellExperiment)
# library(Matrix)
# baron <- readRDS('baron-human.rds')
# segerstolpe <- readRDS('segerstolpe.rds')
## ----eval = FALSE-------------------------------------------------------------
# common_genes <- intersect(rownames(baron), rownames(segerstolpe))
# baron <- baron[common_genes,]
# segerstolpe <- segerstolpe[common_genes, !(segerstolpe$cell_type1 %in% c('not applicable', 'co-expression'))]
## ----eval = FALSE-------------------------------------------------------------
# new_colData = data.frame(
# study_id = rep(c('baron', 'segerstolpe'), c(ncol(baron), ncol(segerstolpe))),
# cell_type = c(as.character(colData(baron)$cell_type1), colData(segerstolpe)$cell_type1)
# )
# pancreas <- SingleCellExperiment(
# Matrix(cbind(assay(baron, 1), assay(segerstolpe, 1)), sparse = TRUE),
# colData = new_colData
# )
# dim(pancreas)
# rm(baron); rm(segerstolpe)
## ----eval = FALSE, fig.width=7,fig.height=6.5---------------------------------
# var_genes = variableGenes(dat = pancreas, exp_labels = pancreas$study_id)
# celltype_NV = MetaNeighborUS(var_genes = var_genes,
# dat = pancreas,
# study_id = pancreas$study_id,
# cell_type = pancreas$cell_type,
# fast_version = TRUE)
# cols = rev(colorRampPalette(RColorBrewer::brewer.pal(11,"RdYlBu"))(100))
# breaks = seq(0, 1, length=101)
# gplots::heatmap.2(celltype_NV,
# margins=c(8,8),
# keysize=1,
# key.xlab="AUROC",
# key.title="NULL",
# trace = "none",
# density.info = "none",
# col = cols,
# breaks = breaks,
# offsetRow=0.1,
# offsetCol=0.1,
# cexRow = 0.7,
# cexCol = 0.7)
## ----eval = FALSE-------------------------------------------------------------
# all_pancreas <- readRDS('all_pancreas.rds')
# dim(all_pancreas)
## ----eval = FALSE,fig.width=7,fig.height=6.5----------------------------------
# var_genes = variableGenes(dat = all_pancreas, exp_labels = all_pancreas$Study_ID)
# celltype_NV = MetaNeighborUS(var_genes = var_genes,
# dat = all_pancreas,
# study_id = all_pancreas$Study_ID,
# cell_type = all_pancreas$Celltype,
# fast_version = TRUE)
# cols = rev(colorRampPalette(RColorBrewer::brewer.pal(11,"RdYlBu"))(100))
# breaks = seq(0, 1, length=101)
# gplots::heatmap.2(celltype_NV,
# margins=c(8,8),
# keysize=1,
# key.xlab="AUROC",
# key.title="NULL",
# trace = "none",
# density.info = "none",
# col = cols,
# breaks = breaks,
# offsetRow=0.1,
# offsetCol=0.1,
# cexRow = 0.7,
# cexCol = 0.7)
## ----eval = FALSE,fig.width=4,fig.height=3, results='hide'--------------------
# data(GOhuman)
# small_pancreas = all_pancreas[, all_pancreas$Celltype %in% c('alpha', 'beta', 'delta')]
# celltype_matrix = model.matrix(~small_pancreas$Celltype - 1)
# colnames(celltype_matrix) = levels(as.factor(small_pancreas$Celltype))
# AUROC_scores = MetaNeighbor(dat = small_pancreas,
# experiment_labels = as.numeric(factor(small_pancreas$Study_ID)),
# celltype_labels = celltype_matrix,
# genesets = GOhuman,
# bplot = TRUE,
# fast_version = TRUE)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.