getSmoothedRTNormalizedMatrix: Generate multiple RT time-window normalized matrices where...

Description Usage Arguments Value Examples

View source: R/higherOrderNormMethods.R

Description

Uses the function getRTNormalizedMatrix to generate multiple normalized matrices which are shifted respective to each other and finally merged into a single matrix. This could potentially reduce effect of fluctuations within individual windows.

Usage

1
2
3
getSmoothedRTNormalizedMatrix(rawMatrix, retentionTimes, normMethod,
  stepSizeMinutes, windowShifts = 2, windowMinCount = 100,
  mergeMethod = "mean", noLogTransform = FALSE)

Arguments

rawMatrix

Target matrix to be normalized

retentionTimes

Vector of retention times corresponding to rawMatrix

normMethod

The normalization method to apply to the time windows

stepSizeMinutes

Size of windows to be normalized

windowShifts

Number of frame shifts.

windowMinCount

Minimum number of features within window.

mergeMethod

Layer merging approach. Mean or median.

noLogTransform

Don't log transform the input

Value

Normalized matrix

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
data(example_data_small)
data(example_data_only_values)
data(example_design_small)
retentionTimes <- as.numeric(example_data[, "Average.RT"])
dataMat <- example_data_only_values
performCyclicLoessNormalization <- function(rawMatrix) {
    log2Matrix <- log2(rawMatrix)
    normMatrix <- limma::normalizeCyclicLoess(log2Matrix, method="fast")
    colnames(normMatrix) <- colnames(rawMatrix)
    normMatrix
}
rtNormMat <- getSmoothedRTNormalizedMatrix(dataMat, retentionTimes, 
    performCyclicLoessNormalization, stepSizeMinutes=1, windowMinCount=100, 
    windowShifts=2, mergeMethod="median")

NormalyzerDE documentation built on Nov. 8, 2020, 8:22 p.m.