Description Usage Arguments Value Author(s) References See Also Examples
Given a transition matrix A, returns the stationary distribution of a Markov chain by computing the eigen vectors of A.
1 | statdis(A)
|
A |
Transition probability matrix, a squared matrix of probabilities (0 ≤ p ≤ 1) with row and column length equal to that of alpha and beta and row sum and column sum both equal to 1 (within some numerical deviation of 1e-6). |
w |
Stationary weights for the distributions of K components based on the transition probability matrix. |
Yue Li
Capp\'e, O. (2001). H2M : A set of MATLAB/OCTAVE functions for the EM estimation of mixtures and hidden Markov models. (http://perso.telecom-paristech.fr/cappe/h2m/)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 |
# Simulate data
TRANS_s <- matrix(c(0.9, 0.1, 0.3, 0.7), nrow=2, byrow=TRUE)
alpha_s <- c(2, 4)
beta_s <- c(1, 0.25)
Total <- 100
x <- nbh_gen(TRANS_s, alpha_s, beta_s, Total);
count <- x$count
label <- x$label
Total <- length(count)
# dummy initialization
TRANS0 <- matrix(rep(0.5,4), 2)
alpha0 <- c(1, 20)
beta0 <- c(1, 1)
NIT_MAX <- 50
TOL <- 1e-100
nbh <- nbh_em(count, TRANS0, alpha0, beta0, NIT_MAX, TOL)
map.accuracy <- length(which(max.col(nbh$postprob) == label))/Total
vit <- nbh_vit(count, nbh$TRANS, nbh$alpha, nbh$beta)
vit.accuracy <- length(which(vit$class == label))/Total
# Plot the marginal distribution (in the stationnary regime)
# Compute negative binomial distributions for all model states
t <- 0:max(count)
tmp <- nbh_em(t, nbh$TRANS, nbh$alpha, nbh$beta, 1)
dens <- tmp$dens
w <- statdis(nbh$TRANS)
# Plot estimate of marginal probabilities
marprob <- apply(t(dens) * (t(w) %*% matrix(1, ncol=length(t))), 2, sum)
plot(t, marprob, pch=8, col="blue", main="Estimated marginal distribution")
# Plot empirical estimated probabilities
dhist <- matrix(0, ncol=length(t))
for(i in t){
dhist[1+i] <- sum(count == i)/Total
}
points(t, dhist, pch=3, col="red")
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.