Nothing
## ----load_data from package, echo=TRUE, results='hide', message=FALSE---------
library(RITANdata)
library(RITAN)
require(knitr)
## ----citation, echo=TRUE------------------------------------------------------
kable( attr(network_list, 'network_data_sources') )
## ----example1, echo=TRUE------------------------------------------------------
my_genes <- geneset_list$MSigDB_C7[['GSE6269_HEALTHY_VS_FLU_INF_PBMC_DN']]
net <- network_overlap( my_genes, resources = 'CCSB' )
## ----example1.1, echo=TRUE----------------------------------------------------
head(unique(net))
## ----example2, echo=TRUE, eval=FALSE------------------------------------------
# net2 <- network_overlap( my_genes, resources = c('CCSB','STRING'), minStringScore = 700 )
# str(net2)
## ----check_input1, echo = TRUE------------------------------------------------
my_genes <- geneset_list$MSigDB_C2[['VERNOCHET_ADIPOGENESIS']]
i <- check_any_net_input( my_genes )
table(i)
## ----check_input2, echo = TRUE------------------------------------------------
i <- check_net_input( my_genes, network_list[['dPPI']] )
table(i)
names(i)[i == 'no']
## ----example3_1, echo=TRUE----------------------------------------------------
my_genes <- geneset_list$MSigDB_C7[['GOLDRATH_NAIVE_VS_MEMORY_CD8_TCELL_UP']]
net3.1 <- network_overlap( my_genes, resources = 'PID',
include_neighbors = FALSE, dedup = TRUE )
nets2use <- c('PID','dPPI','TFe','HumanNet','CCSB')
net3.2 <- network_overlap( my_genes, resources = nets2use,
include_neighbors = FALSE, dedup = TRUE )
net3.3 <- network_overlap( my_genes, resources = 'PID',
include_neighbors = TRUE, dedup = TRUE )
## ----example4, fig.height = 5, fig.width = 5, fig.align = 'center'------------
require(igraph)
net4 <- network_overlap( my_genes, resources = c('PID','dPPI','TFe'),
include_neighbors = FALSE, dedup = TRUE )
edges <- as.matrix( net4[, c(1,3)] )
G <- igraph::make_undirected_graph( c(t(edges)) )
par(mar=rep(0,4))
plot(G, vertex.size = 20, vertex.frame.color = 'white' )
## ----example5, fig.height = 5, fig.width = 5, fig.align = 'center'------------
require(igraph)
G <- as.graph( network_list$PID )
all( c("EP300", "SFN", "TP53", "CCNB1") %in% names(V(G)) )
get.shortest.paths(G, "TP53" , to="CCNB1", mode = "all" )$vpath
get.shortest.paths(G, "EP300", to="SFN" , mode = "all" )$vpath
G <- as.graph( network_list$HumanNet )
all( c("EP300", "SFN", "TP53", "CCNB1") %in% names(V(G)) )
get.shortest.paths(G, "TP53" , to="CCNB1", mode = "all" )$vpath
get.shortest.paths(G, "EP300", to="SFN" , mode = "all" )$vpath
## ----example6, echo=TRUE, eval=FALSE------------------------------------------
# my_genes <- geneset_list$MSigDB_C2[['VERNOCHET_ADIPOGENESIS']]
# net5 <- network_overlap( my_genes )
# g <- unique(c( net5$p1, net5$p2 ))
#
# tab <- data.frame( gene = c('FABP4', 'CEBPA','PPARG','ADRB3','RETN','AGT','HP',
# 'RARRES2','PANK3','FFAR2','LUM', 'MC2R','ADCYAP1R1'),
# TrogRatio = c( 1.8, 1.7, 0.6, 0.3 , 0.3 , 0.4 ,0.2,
# 0.3, 0.1, 0.5, 0.3 , 0.5 , 0.1),
# WAT_BAT = c( 0.8, 1.0, 0.6, 10.0, 21.6, 215.4,2.4,
# 9.5, 3.9, 4.6, 4.0 , 7.3 , 2.6),
# initial = g %in% my_genes
# )
#
# write_simple_table(net3.1, 'net_example.sif')
# write_simple_table(tab, 'net_example.tab')
## ----example7, echo=TRUE, eval=FALSE------------------------------------------
#
# ## Add a new resource to "network_list"
# ### For brevity, we
# network_list[['BioGRID_Mouse']] <- readSIF( 'BIOGRID-ORGANISM-Mus_musculus-3.4.136.symbols.sif.gz', header = TRUE )
# # > str(network_list[['BioGRID_Mouse']])
# # 'data.frame': 38322 obs. of 3 variables:
# # $ p1 : chr "SMAD2" "SMAD2" "SMAD2" "SMAD2" ...
# # $ edge_type: chr "physical" "physical" "physical" "physical" ...
# # $ p2 : chr "Rasd2" "Rab34" "Rhebl1" "Rab38" ...
#
# ## Short example from Tang's 2010 Nature paper
# my_mouse <- c('Sost','Fxyd4','Tmprss6','Crtap','Thpo','Kcnn4','Osm','Slc29a3','ALB')
#
# ## First, check if these genes appear in the BioGRID network.
# check_net_input( my_mouse, network_list[['BioGRID_Mouse']] )
# # Sost Fxyd4 Tmprss6 Crtap Thpo Kcnn4 Osm Slc29a3 ALB
# # "yes" "no" "no" "no" "no" "no" "no" "no" "no"
#
# ## After correcting a few gene names, get the induced subnetwork from mouse data.
# my_mouse <- c('Sost','Fxyd4','Tmprss6','CRTAP','Thpo','KCNN4','Osm','Slc29a3','ALB')
# net.m <- network_overlap( my_mouse, include_neighbors = TRUE, resources = c('BioGRID_Mouse') )
# str(net.m)
# # Generating undirected subnetwork...
# # Total induced subnetwork from 9 genes has 17 nodes and 17 edges (17 unique).
# # 'data.frame': 17 obs. of 3 variables:
# # $ p1 : chr "Sf3a1" "Nphp1" "Iqcb1" "Invs" ...
# # $ edge_type: chr "physical" "physical" "physical" "physical" ...
# # $ p2 : chr "CRTAP" "Invs" "Nphp1" "ALB" ...
#
# ## Also, check within BioGRD's human network
# check_net_input( my_mouse, network_list[['BioGRID_Human']] )
# # Sost Fxyd4 Tmprss6 CRTAP Thpo KCNN4 Osm Slc29a3 ALB
# # "no" "no" "no" "yes" "no" "yes" "no" "no" "yes"
#
# ## Note that gene symbols are case sensitive
# my_mouse <- c('SOST','Fxyd4','Tmprss6','CRTAP','THPO','KCNN4','OSM','Slc29a3','ALB')
# check_net_input( my_mouse, network_list[['BioGRID_Human']] )
# # SOST Fxyd4 Tmprss6 CRTAP THPO KCNN4 OSM Slc29a3 ALB
# # "yes" "no" "no" "yes" "no" "yes" "yes" "no" "yes"
#
# ## Get the induced subnetowrk from human data
# net.h <- network_overlap( my_mouse, include_neighbors = TRUE, resources = c('BioGRID_Human') )
# str(net.h)
# # Generating undirected subnetwork...
# # Total induced subnetwork from 9 genes has 224 nodes and 755 edges (634 unique).
# # 'data.frame': 755 obs. of 3 variables:
# # $ p1 : chr "MBIP" "SH3GL1" "TNNT1" "GFAP" ...
# # $ edge_type: chr "physical" "physical" "physical" "physical" ...
# # $ p2 : chr "MBIP" "SH3GL1" "TNNT1" "GRAP2" ...
#
## ----example8, echo=TRUE, eval=TRUE-------------------------------------------
net <- network_overlap( 'FOXP3', include_neighbors = TRUE, resources = c("PID","dPPI","CCSB" ) )
genes <- unique(c( net$p1, net$p2 ))
e1 <- term_enrichment( genes, "Blood_Translaiton_Modules", verbose=FALSE, all_symbols = cached_coding_genes )
summary(e1)
e2 <- term_enrichment( genes, "ReactomePathways", verbose=FALSE, all_symbols = cached_coding_genes )
summary(e2)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.