Description Usage Arguments Value Examples
This function takes an MBR object and compares the shared regulon targets in order to test whether regulon pairs agree on the predicted downstream effects.
1 2 3 4 5 6 7 8 9 10 11 12 13 | ## S4 method for signature 'MBR'
mbrAssociation(
object,
regulatoryElements = NULL,
minRegulonSize = 15,
doSizeFilter = FALSE,
pValueCutoff = 0.001,
pAdjustMethod = "bonferroni",
estimator = "spearman",
nPermutations = 1000,
miFilter = TRUE,
verbose = TRUE
)
|
object |
A processed object of class MBR |
regulatoryElements |
An optional character vector specifying which 'TNI' regulatory elements should be evaluated. If 'NULL' all regulatory elements will be evaluated. |
minRegulonSize |
A single integer or numeric value specifying the minimum number of elements in a regulon. Gene sets with fewer than this number are removed from the analysis. |
doSizeFilter |
a logical value. If TRUE, negative and positive targets are independently verified by the 'minRegulonSize' argument. |
pValueCutoff |
a single numeric value specifying the cutoff for p-values considered significant. |
pAdjustMethod |
A single character value specifying the p-value adjustment method to be used (see 'p.adjust' function for details). |
estimator |
A character value specifying the estimator used in the association analysis. One of "spearman" (default), "kendall", or "pearson". |
nPermutations |
A single integer value specifying the number of permutations for deriving p-values associating regulon pairs. |
miFilter |
A single logical value specifying to apply the 'miFilter' between two regulators. |
verbose |
A single logical value specifying to display detailed messages (when verbose=TRUE) or not (when verbose=FALSE). |
An MBR object with two data.frames in the slot 'results' listing the inferred 'dual regulons' and correspoding statistics.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 | ##--- load a dataset for demonstration
data("tniData", package = "RTN")
gexp <- tniData$expData
annot <- tniData$rowAnnotation
tfs <- c("IRF8","IRF1","PRDM1","E2F3","STAT4","LMO4","ZNF552")
##--- construct a tni object
rtni <- tni.constructor(gexp, regulatoryElements = tfs, rowAnnotation=annot)
##--- compute regulons
## set nPermutations>=1000
rtni <- tni.permutation(rtni, nPermutations=30)
## set nBootstrap>=100
rtni <- tni.bootstrap(rtni, nBootstrap=30)
## 'eps=NA' estimates threshold from empirical null
rtni <- tni.dpi.filter(rtni, eps=NA)
##--- construct a mbr object
rmbr <- tni2mbrPreprocess(rtni)
##--- run mbrAssociation
## set nPermutations>=1000
rmbr <- mbrAssociation(rmbr, pValueCutoff = 0.05, nPermutations=30)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.