R/sd2gramSpectrum.R

Defines functions sd2gramSpectrum

Documented in sd2gramSpectrum

#' @title sd2gramSpectrum - Similarity of molecules by walk-based graph kernels
#' 
#' @description This function computes several walk-based graph kernel functions
#' based on finite length walks and a fast implementation for input SDF file(s).
#'
#' @param sdf File containing the molecules. Must be in MDL file format
#' (MOL and SDF files). For more information on the file format see 
#' http://en.wikipedia.org/wiki/Chemical_table_file.
#' @param sdf2 A second file containing molecules. Must also be in SDF.
#' If specified the molecules of the first file will be compared with the 
#' molecules of this second file. Default = "missing".
#' @param kernelType Type of kernel to be used. Options are "spectrum (Spectrum 
#' kernel) , "tanimoto" (Tanimoto kernel), "minmaxTanimoto" (MinMax Tanimoto kernel),
#' "marginalized (Marginalized kernel approximation) and 
#' "lambda" (LambdaK kernel). See vignette for details. Default = "spectrum".
#' @param margKernelEndProbability The ending probability for the marginalized
#' kernel. Default = 0.1. 
#' @param lambdaKernelLambda The lambda parameter of the LambdaK kernel. 
#' Default = 1.0.
#' @param depthMax The maximal length of the molecular fragments. Default = 3.
#' @param onlyDepthMax Whether fragments up to the given length should be 
#' used or only fragments of the given length. Default = FALSE.
#' @param flagRemoveH A logical that indicates whether H-atoms should be 
#' removed or not. Default = FALSE
#' @param morganOrder The order of the DeMorgan indices to be used. If set to
#' zero no DeMorgan indices are used. The higher the order the more different
#' types of atoms exist and consequently the more dissimilar will be the molecules.
#' Default = 0.
#' @param silentMode Whether or not the program should print progress reports
#' to the standart output. Default = FALSE.
#' @param returnNormalized A logical specifying whether a normalized kernel
#' matrix should be returned. Default = TRUE.
#' @param detectArom Whether aromatic rings should be detected and aromatic
#' bonds should a special bond type. If large molecules are in the data set
#' the detection of aromatic rings can be very time-consuming. (Default = FALSE).
#' @examples 
#' sdfolder <- system.file("extdata",package="Rchemcpp")
#' sdf <- list.files(sdfolder,full.names=TRUE,pattern="tiny")
#' K <- sd2gramSpectrum(sdf)
#' @return A numeric matrix containing the similarity values between the
#' molecules.
#' @author Michael Mahr <[email protected]@bioinf.jku.at>
#' c++ function written by Jean-Luc Perret and Pierre Mahe
#' 
#' @export


sd2gramSpectrum = function(sdf, sdf2, 
		kernelType = c("spectrum", "tanimoto", "minmaxTanimoto","marginalized","lambda"), 
		margKernelEndProbability = 0.1, lambdaKernelLambda = 1.0, 
		depthMax = as.integer(3), onlyDepthMax = FALSE , flagRemoveH = FALSE, 
		morganOrder = as.integer(0), 
		silentMode = FALSE, returnNormalized = TRUE, detectArom=FALSE)
{
	margKernelConvgce = 10000;
	
	margKernelSkipSkeleton = FALSE;
	
	
	if(!is.character(kernelType)) stop("kernelType must be a string")
	if(!is.numeric(margKernelEndProbability)) stop("margKernelEndProbability must be numeric")
	if(!is.numeric(lambdaKernelLambda)) stop("lambdaKernelLambda must be numeric")
	
	if(!is.numeric(depthMax)) stop("depthMax must be integer")
	depthMax <- as.integer(depthMax)
	if(!is.logical(onlyDepthMax)) stop("onlyDepthMax must be logical")
	if(!is.logical(flagRemoveH)) stop("flagRemoveH must be logical")
	if(!is.numeric(morganOrder)) stop("morganOrder must be integer")
	morganOrder <- as.integer(morganOrder)
	
	if(!is.logical(silentMode)) stop("silentMode must be logical")
	if(!is.logical(returnNormalized)) stop("returnNormalized must be logical")
	
	
	if (missing(kernelType)) {kernelType = kernelType[1]}
	kernelType = match.arg(kernelType)
	
	
	#For passing...
	if (kernelType == "marginalized"){
		kernelParam = margKernelEndProbability;
	}else if (kernelType == "lambda"){
		kernelParam = lambdaKernelLambda;
	}else{
		kernelParam = 0.0;
	}
	kernelTypeIndex = as.integer(which(c("spectrum", "tanimoto", "minmaxTanimoto","marginalized","lambda") == kernelType)-1)
	
	
	if(inherits(sdf,"SDFset")){
		datablock(sdf) <- lapply(1:length(sdf),function(x) return(""))
		
		aSet <- SDFsetToRmoleculeset(sdf,detectArom=detectArom)[[1]]
		molnames <- ChemmineR::sdfid(sdf)
		molnames2 <- molnames
		if (!missing(sdf2)){
			if (inherits(sdf2,"SDFset")){
				datablock(sdf2) <- lapply(1:length(sdf2),function(x) return(""))
				
				aSet2 <- SDFsetToRmoleculeset(sdf2,detectArom=detectArom)[[1]]
				
				molnames2 <- ChemmineR::sdfid(sdf2)
			} else 
				stop("Input must be existing SDF files or \"SDFset\" objects.")	
		}
		inputMode <- "SDFset"
		
	} else if (inherits(sdf,"Rcpp_Rmoleculeset")) {
		aSet <- sdf
		molnames <- NULL
		molnames2 <- NULL
		if (!missing(sdf2)){
			if (inherits(sdf2,"Rcpp_Rmoleculeset")){
				aSet2 <- sdf2
			} else 
				stop("Input must be existing SDF files or \"SDFset\" objects.")
		}
		inputMode <- "Rmoleculeset"
		
		
	} else if (is.character(sdf) & file.exists(sdf)) {
		
		
		aSetList <- readRmoleculeset(sdf,detectArom=detectArom)
		aSet <- aSetList[[1]]
		molnames <- aSetList[[3]]
		molnames2 <- aSetList[[3]]
		if (!missing(sdf2)){
			if (is.character(sdf2) & file.exists(sdf2)){
				aSetList2  <-  readRmoleculeset(sdf2,detectArom=detectArom)
				aSet2 <- aSetList2[[1]]
				molnames2 <- aSetList2[[3]]
			} else 
				stop("Input must be existing SDF files or \"SDFset\" objects.")	
		} 
		
		inputMode <- "fileName"
		
	} else {
		stop("Input must be existing SDF files or \"SDFset\" objects.")
	}
	
	#browser()
	# if sflag = 1 --> SEPARATE TEST SET
	if( !missing(sdf2) ){
		
		# 1 - data initialization
		# -----------------------
		# read the set of molecules
		
		# remove H when specified on command line
		if( flagRemoveH == TRUE ){
			if( !silentMode ){
				print("removing hydrogens");
			}
			aSet$hideHydrogens();
			aSet2$hideHydrogens();
		}
		
		# compute Morgan labels
		if( !silentMode ){
			print(paste("setting morgan labels ", morganOrder));
		}
		aSet$setMorganLabels( morganOrder );
		aSet2$setMorganLabels( morganOrder );
		
		# set kashima probabilities if kernelType = marginalized
		if(kernelType == "marginalized"){
			aSet$setKashimaKernelParam( kernelParam, margKernelConvgce, margKernelSkipSkeleton );
			aSet2$setKashimaKernelParam( kernelParam, margKernelConvgce, margKernelSkipSkeleton );
		}
		
		# initialize gram matrices
		aSet2$initializeSelfKernel( 0.0);  
		aSet$initializeSelfKernel( 0.0);   
		aSet$setComparisonSetCopy( aSet2 );
		aSet$initializeGram( 0.0 );
		
		#browser()
		
		if( !silentMode){
			print("#### initialization Gram OK");
		}
		
		
		# 3 - compute the gram matrix
		# ----------------------------
		gramSpectrum_test( aSet, depthMax, kernelTypeIndex, kernelParam, onlyDepthMax, silentMode);
		
		if( !silentMode ){
			print("gramComputeSpectrum (test) OK");
		}
		
		# normalize gram
		if (kernelType == "tanimoto")
		{
			aSet$normalizeTanimoto();
		}
		else if (kernelType == "minmaxTanimoto") 
		{
			aSet$normalizeTanimotoMinMax();
		}
		else
		{
			aSet$normalizeGram();
		}
		
		
		if( !silentMode ){
			print("normalize gram (test) OK");
		}
		
		
		if (returnNormalized == FALSE)
		{	
			K <- do.call(rbind,aSet$getGram() )
			
		}
		else
		{		
			K <- do.call(rbind,aSet$getGramNormal() )
			
		}
		
		#aSet$writeSelfKernelList( outputDir + baseName + "_test", silentMode );
		#aSet$getComparisonSet$writeSelfKernelList( outputDir + baseName + "_train", silentMode ); !!!
		
	}else{ # --> SELF KERNEL
		
		# 1 - data initialization
		# -----------------------
		# read the set of molecules  
		
		# remove H when specified on command line
		if( flagRemoveH == TRUE ){
			if( !silentMode ){
				print("removing hydrogens");
			}
			aSet$hideHydrogens();
		}
		
		# compute Morgan labels
		if( !silentMode ){
			print(paste("setting morgan labels ", morganOrder));
		}
		aSet$setMorganLabels( morganOrder );
		
		# set kashima probabilities if kernelType = marginalized
		if(kernelType == "marginalized"){
			aSet$setKashimaKernelParam( kernelParam, margKernelConvgce, margKernelSkipSkeleton );
		}
		
		# initialize gram matrices
		aSet$setComparisonSetSelf();
		aSet$initializeGram( 0.0 );
		aSet$initializeSelfKernel( 0.0);
		
		if( !silentMode)
		{
			print("#### initialization Gram OK");
		}
		
		
		# 3 - compute the gram matrix
		# ---------------------------
		gramSpectrum_self( aSet, depthMax, kernelTypeIndex, kernelParam, onlyDepthMax, silentMode);
		
		if( !silentMode ){
			print("gramComputeSpectrum (self) OK");
		}
		
		# normalize gram
		if (kernelType == "tanimoto")
		{
			aSet$normalizeTanimoto();
		}
		else if (kernelType == "minmaxTanimoto") 
		{
			aSet$normalizeTanimotoMinMax();
		}
		else
		{
			aSet$normalizeGram();
		}
		
		if( !silentMode ){
			print("normalize gram (self) OK");
		}
		
		
		if (returnNormalized == FALSE)
		{	
			K <- do.call(rbind,aSet$getGram() )
			
		}
		else
		{		
			K <- do.call(rbind,aSet$getGramNormal() )
			
		}
		
		#aSet$writeSelfKernelList( outputDir + baseName + "_train", false);
		
	}  
	
	
	
	if (inputMode == "fileName" | inputMode == "SDFset"){
		aSet$deleteAll()
		if (exists("aSet2"))
			aSet2$deleteAll()
	}
	
	try({
				rownames(K) <- molnames
				colnames(K) <- molnames2
			})
	
	return ( K )
	
}

Try the Rchemcpp package in your browser

Any scripts or data that you put into this service are public.

Rchemcpp documentation built on May 2, 2018, 3:16 a.m.