Nothing
## ----global_options, include=FALSE--------------------------------------------
knitr::opts_chunk$set(warning=FALSE, message=FALSE, include = TRUE,
fig.height = 8, fig.width = 8, fig.align = "center",
echo=TRUE
)
## ----install, eval = FALSE----------------------------------------------------
# BiocManager::install('Spaniel')
## ---- load libraries----------------------------------------------------------
library(Spaniel)
library(Seurat)
## ----counts-------------------------------------------------------------------
### read in test data
counts <- readRDS(file.path(system.file(package = "Spaniel"),
"extdata/counts.rds"))
## ----colnames-----------------------------------------------------------------
colnames(counts)[1:10]
## ----rownames-----------------------------------------------------------------
rownames(counts)[1:10]
## ----barcodes-----------------------------------------------------------------
barcodesFile <- file.path(system.file(package = "Spaniel"),
"1000L2_barcodes.txt")
## ----barcodesTop--------------------------------------------------------------
barcodes <- read.csv(barcodesFile, sep = "\t", header = FALSE)
head(barcodes)
## ----createSeurat-------------------------------------------------------------
seuratObj <- createSeurat(counts,
barcodesFile,
projectName = "TestProj",
sectionNumber = 1
)
## ----createSeurat_meta--------------------------------------------------------
head(seuratObj[[]])
## ----createSeurat_counts------------------------------------------------------
GetAssayData(seuratObj, "counts")[1:10, 1:5]
## ----createSeurat_project-----------------------------------------------------
Project(seuratObj)
## ----readSCE------------------------------------------------------------------
sce <- createSCE(counts = counts,
barcodeFile = barcodesFile,
projectName = "TestProj",
sectionNumber = 1)
## ----readSCE_ColData----------------------------------------------------------
head(colData(sce)[1:5,1:5])
## ----readSCE_counts-----------------------------------------------------------
counts(sce)[1:10, 1:5]
## ----readSCE_Project----------------------------------------------------------
colData(sce)$project[1]
## ---- fig.show='hold'---------------------------------------------------------
### Load histological image into R
imgFile <- file.path(system.file(package = "Spaniel"),
"HE_Rep1_resized.jpg")
image <- parseImage(imgFile)
## ---- qcplotting, results = "hide"-------------------------------------------
minGenes <- 280
minUMI <- 67500
filter <- seuratObj$nCount_RNA > minUMI &
seuratObj$nFeature_RNA > minGenes
spanielPlot(object = seuratObj,
grob = image,
plotType = "NoGenes",
showFilter = filter)
## ---- filter_seurat-----------------------------------------------------------
seuratFiltered <- subset(x = seuratObj, subset = nFeature_RNA > minGenes &
nCount_RNA > minUMI)
spanielPlot(object = seuratFiltered,
grob = image,
plotType = "NoGenes")
## ---- select_spots, eval = FALSE----------------------------------------------
# selectSpots(seuratFiltered, image)
#
## ---- remove_spots------------------------------------------------------------
spotsToRemove <- file.path(system.file(package = "Spaniel"),
"points_to_remove.txt")
seuratFiltered <- removeSpots(seuratFiltered,
pointsToRemove = spotsToRemove)
spanielPlot(object = seuratFiltered,
grob = image,
plotType = "NoGenes")
## ---- find_clusters, message=FALSE, warning=FALSE, echo=TRUE, results = "hide"----
seuratFiltered <- NormalizeData(object = seuratFiltered,
normalization.method = "LogNormalize",
scale.factor = 10000)
seuratFiltered <- FindVariableFeatures(object = seuratFiltered,
selection.method = "vst",
nfeatures = 2000)
all.genes <- rownames(x = seuratFiltered)
seuratFiltered <- ScaleData(object = seuratFiltered, features = all.genes)
seuratFiltered <- RunPCA(object = seuratFiltered,
features = VariableFeatures(object = seuratFiltered)
)
seuratFiltered <- FindNeighbors(object = seuratFiltered, dims = 1:10)
seuratFiltered <- FindClusters(object = seuratFiltered,
resolution = c(0.4, 0.5, 0.6, 0.8))
## ---- genePlot, results = "hide"----------------------------------------------
gene = "Nrgn"
spanielPlot(object = seuratFiltered, grob = image,
plotType = "Gene",
gene = gene)
## ---- clusterPlot, warning= FALSE, message = FALSE, results = "hide"----------
spanielPlot(object = seuratFiltered,
grob = image,
plotType = "Cluster",
clusterRes = "RNA_snn_res.0.8"
)
## ---- markClusters------------------------------------------------------------
seuratFiltered <- markClusterCol(seuratFiltered, "res")
## ---- eval = FALSE, echo=TRUE------------------------------------------------
# saveRDS(seuratFiltered, "data.rds")
## ---- eval = FALSE, echo=TRUE-------------------------------------------------
# file.path(system.file(package = "Spaniel"), "extdata/SeuratData.rds" )
## ---- eval = FALSE, echo=TRUE-------------------------------------------------
# saveRDS(image, "image.rds")
#
## ---- eval = FALSE------------------------------------------------------------
# file.path(system.file(package = "Spaniel"), "extdata/image.rds" )
## ---- markclusterCols, eval = FALSE-------------------------------------------
# runShinySpaniel()
#
## ---- eval = FALSE------------------------------------------------------------
# spanielApp <- file.path(system.file(package = "Spaniel"), "ShinySpaniel" )
## ---- eval = FALSE------------------------------------------------------------
# library(rsconnect)
# rsconnect::deployApp(spanielApp)
#
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.