Nothing
### =========================================================================
### RangedSummarizedExperiment objects
### -------------------------------------------------------------------------
###
### The 'elementMetadata' slot must contain a zero-column DataFrame at all time
### (this is checked by the validity method). The top-level mcols are stored on
### the rowRanges component.
setClass("RangedSummarizedExperiment",
contains="SummarizedExperiment",
representation(
rowRanges="GenomicRanges_OR_GRangesList"
),
prototype(
rowRanges=GRanges()
)
)
### Combine the new "parallel slots" with those of the parent class. Make
### sure to put the new parallel slots **first**. See R/Vector-class.R file
### in the S4Vectors package for what slots should or should not be considered
### "parallel".
setMethod("parallel_slot_names", "RangedSummarizedExperiment",
function(x) c("rowRanges", callNextMethod())
)
### - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
### Validity
###
### The names and mcols of a RangedSummarizedExperiment must be set on its
### rowRanges slot, not in its NAMES and elementMetadata slots!
.valid.RangedSummarizedExperiment <- function(x)
{
if (!is.null(x@NAMES))
return("'NAMES' slot must be set to NULL at all time")
if (ncol(x@elementMetadata) != 0L)
return(wmsg("'elementMetadata' slot must contain a zero-column ",
"DataFrame at all time"))
rowRanges_len <- length(x@rowRanges)
x_nrow <- length(x)
if (rowRanges_len != x_nrow) {
txt <- sprintf(
"\n length of 'rowRanges' (%d) must equal nb of rows in 'x' (%d)",
rowRanges_len, x_nrow)
return(txt)
}
NULL
}
setValidity2("RangedSummarizedExperiment", .valid.RangedSummarizedExperiment)
### - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
### Constructor
###
.new_RangedSummarizedExperiment <- function(assays, rowRanges, colData,
metadata)
{
assays <- Assays(assays, as.null.if.zero.assay=TRUE)
elementMetadata <- S4Vectors:::make_zero_col_DataFrame(length(rowRanges))
new("RangedSummarizedExperiment", rowRanges=rowRanges,
colData=colData,
assays=assays,
elementMetadata=elementMetadata,
metadata=as.list(metadata))
}
.get_rownames_from_assays <- function(assays)
{
if (length(assays) == 0L)
return(NULL)
rownames(assays[[1L]])
}
.get_colnames_from_assays <- function(assays)
{
if (length(assays) == 0L)
return(NULL)
colnames(assays[[1L]])
}
SummarizedExperiment <- function(assays=SimpleList(),
rowData=NULL, rowRanges=GRangesList(),
colData=DataFrame(),
metadata=list())
{
assays <- normarg_assays(assays, as.null.if.zero.assay=TRUE)
if (!missing(colData)) {
if (!is(colData, "DataFrame"))
colData <- as(colData, "DataFrame")
if (is.null(rownames(colData)))
rownames(colData) <- .get_colnames_from_assays(assays)
} else if (length(assays) != 0L) {
a1 <- assays[[1L]]
nms <- colnames(a1)
colData <- DataFrame(x=seq_len(ncol(a1)), row.names=nms)[, FALSE]
}
if (is.null(rowData)) {
if (missing(rowRanges)) {
ans_rownames <- .get_rownames_from_assays(assays)
} else {
if (is.null(names(rowRanges)))
names(rowRanges) <- .get_rownames_from_assays(assays)
ans_rownames <- names(rowRanges)
}
} else {
if (!missing(rowRanges))
stop("only one of 'rowData' and 'rowRanges' can be specified")
if (is(rowData, "GenomicRanges_OR_GRangesList")) {
rowRanges <- rowData
if (is.null(names(rowRanges)))
names(rowRanges) <- .get_rownames_from_assays(assays)
ans_rownames <- names(rowRanges)
} else {
if (!is(rowData, "DataFrame"))
rowData <- as(rowData, "DataFrame")
ans_rownames <- rownames(rowData)
if (is.null(ans_rownames))
ans_rownames <- .get_rownames_from_assays(assays)
}
}
if (missing(rowRanges) && !is(rowData, "GenomicRanges_OR_GRangesList")) {
new_SummarizedExperiment(assays, ans_rownames, rowData, colData,
metadata)
} else {
.new_RangedSummarizedExperiment(assays, rowRanges, colData, metadata)
}
}
### - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
### Coercion
###
### See makeSummarizedExperimentFromExpressionSet.R for coercion back and
### forth between SummarizedExperiment and ExpressionSet.
###
.from_RangedSummarizedExperiment_to_SummarizedExperiment <- function(from)
{
new_SummarizedExperiment(from@assays,
names(from@rowRanges),
mcols(from@rowRanges, use.names=FALSE),
from@colData,
from@metadata)
}
setAs("RangedSummarizedExperiment", "SummarizedExperiment",
.from_RangedSummarizedExperiment_to_SummarizedExperiment
)
.from_SummarizedExperiment_to_RangedSummarizedExperiment <- function(from)
{
partitioning <- PartitioningByEnd(integer(length(from)), names=names(from))
rowRanges <- relist(GRanges(), partitioning)
mcols(rowRanges) <- mcols(from, use.names=FALSE)
.new_RangedSummarizedExperiment(from@assays,
rowRanges,
from@colData,
from@metadata)
}
setAs("SummarizedExperiment", "RangedSummarizedExperiment",
.from_SummarizedExperiment_to_RangedSummarizedExperiment
)
### - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
### Accessors
###
### The rowRanges() generic is defined in the MatrixGenerics package.
setMethod("rowRanges", "SummarizedExperiment",
function(x, ...) NULL
)
### Fix old GRanges instances on-the-fly.
setMethod("rowRanges", "RangedSummarizedExperiment",
function(x, ...) updateObject(x@rowRanges, check=FALSE)
)
setGeneric("rowRanges<-",
function(x, ..., value) standardGeneric("rowRanges<-"))
### No-op.
setReplaceMethod("rowRanges", c("SummarizedExperiment", "NULL"),
function(x, ..., value) x
)
### Degrade 'x' to SummarizedExperiment instance.
setReplaceMethod("rowRanges", c("RangedSummarizedExperiment", "NULL"),
function(x, ..., value) as(x, "SummarizedExperiment", strict=TRUE)
)
.SummarizedExperiment.rowRanges.replace <-
function(x, ..., value)
{
if (is(x, "RangedSummarizedExperiment")) {
x <- updateObject(x, check=FALSE)
} else {
x <- as(x, "RangedSummarizedExperiment")
}
x <- BiocGenerics:::replaceSlots(x, ...,
rowRanges=value,
elementMetadata=S4Vectors:::make_zero_col_DataFrame(length(value)),
check=FALSE)
msg <- .valid.SummarizedExperiment.assays_nrow(x)
if (!is.null(msg))
stop(msg)
x
}
setReplaceMethod("rowRanges", c("SummarizedExperiment", "GenomicRanges"),
.SummarizedExperiment.rowRanges.replace)
setReplaceMethod("rowRanges", c("SummarizedExperiment", "GRangesList"),
.SummarizedExperiment.rowRanges.replace)
setMethod("names", "RangedSummarizedExperiment",
function(x) names(rowRanges(x))
)
setReplaceMethod("names", "RangedSummarizedExperiment",
function(x, value)
{
rowRanges <- rowRanges(x)
names(rowRanges) <- value
BiocGenerics:::replaceSlots(x, rowRanges=rowRanges, check=FALSE)
})
setMethod("dimnames", "RangedSummarizedExperiment",
function(x)
{
ans <- list(names(x), rownames(colData(x)))
DelayedArray:::simplify_NULL_dimnames(ans)
})
setReplaceMethod("dimnames", c("RangedSummarizedExperiment", "list"),
function(x, value)
{
rowRanges <- rowRanges(x)
names(rowRanges) <- value[[1]]
colData <- colData(x)
rownames(colData) <- value[[2]]
BiocGenerics:::replaceSlots(x,
rowRanges=rowRanges,
colData=colData,
check=FALSE)
})
### - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
### Subsetting
###
.DollarNames.RangedSummarizedExperiment <- .DollarNames.SummarizedExperiment
setMethod("subset", "RangedSummarizedExperiment",
function(x, subset, select, ...)
{
i <- S4Vectors:::evalqForSubset(subset, rowRanges(x), ...)
j <- S4Vectors:::evalqForSubset(select, colData(x), ...)
x[i, j]
})
### - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
## colData-as-GRanges compatibility: allow direct access to GRanges /
## GRangesList colData for select functions
## Not supported:
##
## Not consistent SummarizedExperiment structure: length, names,
## as.data.frame, c.
## Length-changing endomorphisms: disjoin, gaps, reduce, unique.
## 'legacy' data types / functions: as "RangedData", as "IntegerRangesList",
## renameSeqlevels, keepSeqlevels.
## Possile to implement, but not yet: Ops, map, window, window<-
## mcols
setMethod("mcols", "RangedSummarizedExperiment",
function(x, use.names=TRUE, ...)
{
mcols(rowRanges(x), use.names=use.names, ...)
})
setReplaceMethod("mcols", "RangedSummarizedExperiment",
function(x, ..., value)
{
BiocGenerics:::replaceSlots(x,
rowRanges=local({
r <- rowRanges(x)
mcols(r) <- value
r
}),
check=FALSE)
})
### mcols() is the recommended way for accessing the metadata columns.
### Use of values() or elementMetadata() is discouraged.
setMethod("elementMetadata", "RangedSummarizedExperiment",
function(x, use.names=FALSE, ...)
{
elementMetadata(rowRanges(x), use.names=use.names, ...)
})
setReplaceMethod("elementMetadata", "RangedSummarizedExperiment",
function(x, ..., value)
{
elementMetadata(rowRanges(x), ...) <- value
x
})
## Single dispatch, generic signature fun(x, ...)
local({
.funs <-
c("duplicated", "end", "end<-", "ranges", "seqinfo", "seqnames",
"start", "start<-", "strand", "width", "width<-")
endomorphisms <- .funs[grepl("<-$", .funs)]
tmpl <- function() {}
environment(tmpl) <- parent.frame(2)
for (.fun in .funs) {
generic <- getGeneric(.fun)
formals(tmpl) <- formals(generic)
fmls <- as.list(formals(tmpl))
fmls[] <- sapply(names(fmls), as.symbol)
fmls[[generic@signature]] <- quote(rowRanges(x))
if (.fun %in% endomorphisms)
body(tmpl) <- substitute({
rowRanges(x) <- do.call(FUN, ARGS)
x
}, list(FUN=.fun, ARGS=fmls))
else
body(tmpl) <-
substitute(do.call(FUN, ARGS),
list(FUN=as.symbol(.fun), ARGS=fmls))
setMethod(.fun, "RangedSummarizedExperiment", tmpl)
}
})
setMethod("granges", "RangedSummarizedExperiment",
function(x, use.mcols=FALSE, ...)
{
if (!identical(use.mcols, FALSE))
stop("\"granges\" method for RangedSummarizedExperiment objects ",
"does not support the 'use.mcols' argument")
rowRanges(x)
})
## 2-argument dispatch:
## pcompare / Compare
##
.RangedSummarizedExperiment.pcompare <-
function(x, y)
{
if (is(x, "RangedSummarizedExperiment"))
x <- rowRanges(x)
if (is(y, "RangedSummarizedExperiment"))
y <- rowRanges(y)
pcompare(x, y)
}
.RangedSummarizedExperiment.Compare <-
function(e1, e2)
{
if (is(e1, "RangedSummarizedExperiment"))
e1 <- rowRanges(e1)
if (is(e2, "RangedSummarizedExperiment"))
e2 <- rowRanges(e2)
callGeneric(e1=e1, e2=e2)
}
local({
.signatures <- list(
c("RangedSummarizedExperiment", "ANY"),
c("ANY", "RangedSummarizedExperiment"),
c("RangedSummarizedExperiment", "RangedSummarizedExperiment"))
for (.sig in .signatures) {
setMethod("pcompare", .sig, .RangedSummarizedExperiment.pcompare)
setMethod("Compare", .sig, .RangedSummarizedExperiment.Compare)
}
})
## additional getters / setters
setReplaceMethod("strand", "RangedSummarizedExperiment",
function(x, ..., value)
{
strand(rowRanges(x)) <- value
x
})
setReplaceMethod("ranges", "RangedSummarizedExperiment",
function(x, ..., value)
{
ranges(rowRanges(x)) <- value
x
})
## order, rank, sort
setMethod("is.unsorted", "RangedSummarizedExperiment",
function(x, na.rm = FALSE, strictly = FALSE, ignore.strand = FALSE)
{
x <- rowRanges(x)
if (!is(x, "GenomicRanges"))
stop("is.unsorted() is not yet supported when 'rowRanges(x)' is a ",
class(x), " object")
callGeneric()
})
setMethod("order", "RangedSummarizedExperiment",
function(..., na.last=TRUE, decreasing=FALSE,
method=c("auto", "shell", "radix"))
{
args <- lapply(list(...), rowRanges)
do.call("order", c(args, list(na.last=na.last,
decreasing=decreasing,
method=method)))
})
setMethod("rank", "RangedSummarizedExperiment",
function(x, na.last = TRUE,
ties.method = c("average", "first", "last", "random", "max", "min"))
{
ties.method <- match.arg(ties.method)
rank(rowRanges(x), na.last=na.last, ties.method=ties.method)
})
setMethod("sort", "RangedSummarizedExperiment",
function(x, decreasing = FALSE, ignore.strand = FALSE)
{
x_rowRanges <- rowRanges(x)
if (!is(x_rowRanges, "GenomicRanges"))
stop("sort() is not yet supported when 'rowRanges(x)' is a ",
class(x_rowRanges), " object")
oo <- GenomicRanges:::order_GenomicRanges(x_rowRanges,
decreasing = decreasing,
ignore.strand = ignore.strand)
x[oo]
})
## seqinfo (also seqlevels, genome, seqlevels<-, genome<-), seqinfo<-
setMethod("seqinfo", "RangedSummarizedExperiment",
function(x)
{
seqinfo(x@rowRanges)
})
.set_RangedSummarizedExperiment_seqinfo <-
function(x, new2old=NULL,
pruning.mode=c("error", "coarse", "fine", "tidy"),
value)
{
if (!is(value, "Seqinfo"))
stop("the supplied 'seqinfo' must be a Seqinfo object")
pruning.mode <- match.arg(pruning.mode)
if (pruning.mode == "fine") {
if (is(x@rowRanges, "GenomicRanges"))
stop(wmsg("\"fine\" pruning mode is not supported on ",
class(x), " objects with a rowRanges component that ",
"is a GRanges object or a GenomicRanges derivative"))
} else {
dangling_seqlevels <- GenomeInfoDb:::getDanglingSeqlevels(x@rowRanges,
new2old=new2old,
pruning.mode=pruning.mode,
seqlevels(value))
if (length(dangling_seqlevels) != 0L) {
idx <- !(seqnames(x@rowRanges) %in% dangling_seqlevels)
## 'idx' should be either a logical vector or a list-like
## object where all the list elements are logical vectors (e.g.
## a LogicalList or RleList object). If the latter, we transform
## it into a logical vector.
if (is(idx, "List")) {
if (pruning.mode == "coarse") {
idx <- all(idx) # "coarse" pruning
} else {
idx <- any(idx) | elementNROWS(idx) == 0L # "tidy" pruning
}
}
## 'idx' now guaranteed to be a logical vector.
x <- x[idx]
}
}
seqinfo(x@rowRanges, new2old=new2old, pruning.mode=pruning.mode) <- value
if (is.character(msg <- .valid.RangedSummarizedExperiment(x)))
stop(msg)
x
}
setReplaceMethod("seqinfo", "RangedSummarizedExperiment",
.set_RangedSummarizedExperiment_seqinfo
)
setMethod("split", "RangedSummarizedExperiment",
function(x, f, drop=FALSE, ...)
{
splitAsList(x, f, drop=drop)
})
### - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
### updateObject()
###
.updateObject_RangedSummarizedExperiment <- function(object, ..., verbose=FALSE)
{
object <- callNextMethod() # call method for SummarizedExperiment objects
object@rowRanges <- updateObject(object@rowRanges, ..., verbose=verbose)
object
}
setMethod("updateObject", "RangedSummarizedExperiment",
.updateObject_RangedSummarizedExperiment
)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.