Nothing
####################################################################
## Author: Bjarne Johannessen, Anita Sveen and Rolf I. Skotheim
## Maintainer: Bjarne Johannessen <bjarnej@ifi.uio.no>
## License: Artistic 2.0
## Part of the TIN package
####################################################################
## Function for creating a plot that visualizes the number of splicing
## factor genes with expression levels significantly correlated with the
## sample-wise total relative amounts of aberrant exon usage.
correlationPlot <- function(fileName, tra, geneSummaries,
splicingFactors, randomGeneSets, traPermutations)
{
fmat2 <- str_sub(fileName, -2, -1)
fmat3 <- str_sub(fileName, -3, -1)
fmat4 <- str_sub(fileName, -4, -1)
spliceGeneSummaries <-
geneSummaries[rownames(geneSummaries) %in% splicingFactors[, 1], ]
L <- vector('numeric', traPermutations)
for (i in seq_len(traPermutations)) {
perm <- sample(tra)
cp <- corAndPvalue(t(spliceGeneSummaries[, seq_along(perm)]),
perm, alternative = "two.sided")
m <- matrix(c(cp$cor, cp$p), ncol = 2)
colnames(m) <- c("cor", "p")
m.df <- data.frame(m)
s <- m.df[m.df$p < 0.05, ]
L[i] <- dim(s)[1]
}
bins <- seq(0, dim(splicingFactors)[1], by = 2)
if (fmat3 == 'png') {
png(fileName)
} else if (fmat3 == 'jpg' || fmat4 == 'jpeg') {
jpeg(fileName)
} else if (fmat3 == 'eps' || fmat2 == 'ps') {
postscript(fileName)
} else if (fmat3 == 'pdf') {
pdf(fileName)
} else if (fmat3 == 'bmp') {
bmp(fileName)
}
B <- vector('numeric', randomGeneSets)
for (i in seq_len(randomGeneSets)) {
randGeneSummaries <- geneSummaries[sample(nrow(geneSummaries),
length(splicingFactors[, 1])), ]
cp <- corAndPvalue(t(randGeneSummaries[, seq_along(tra)]),
tra, alternative = "two.sided")
g <- matrix(c(cp$cor, cp$p), ncol = 2)
colnames(g)<-c("cor", "p")
g.df <- data.frame(g)
gs <- g.df[g.df$p < 0.05, ]
B[i] <- dim(gs)[1]
}
randomGeneSetsDist <- NULL
traPermutationsDist <- NULL
assign("randomGeneSetsDist", B, envir = .GlobalEnv)
assign("traPermutationsDist", L, envir = .GlobalEnv)
binsB <- seq(0, dim(splicingFactors)[1], by = 2)
lim <- max(B, L)
h <- hist(B, col = "#7292CB", border = "#7292CB", breaks = seq(min(B) - 2,
max(B) + 2, by = 2), axes = FALSE, main = "",
xlab = "No. of significantly correlated genes",
ylab = "No. of gene sets/permutations",
xlim = c(0, dim(splicingFactors)[1]))
hh <- hist(L, breaks = seq(min(L) - 2, max(L) + 2, by = 2),
col = "#2B3175", border = "#2B3175", axes = FALSE)
ylim = c(0,max(h$counts,hh$counts))
nylim <- max(max(h$counts), max(hh$counts))
plot(h, xlim = c(0, dim(splicingFactors)[1]), ylim = ylim,
col = "#7292CB", border = "#7292CB", axes = FALSE,
xlab = "No. of significantly correlated genes",
ylab = "No. of gene sets/permutations", main = "")
plot(hh, xlim = c(0, dim(splicingFactors)[1]), ylim = ylim, add = TRUE,
col = "#2B3175", border = "#2B3175", axes=FALSE, main = "")
axis(1, at = seq(0, dim(splicingFactors)[1], by = 70),
labels = seq(0, dim(splicingFactors)[1], by = 70))
axis(2, at = c(0, round(max(hh$counts), digits = -1)),
labels = c(0, round(max(hh$counts), digits = -1)), las = 1)
correlationOrig <- corAndPvalue(t(spliceGeneSummaries[, seq_along(tra)]),
tra, alternative = "two.sided")
m <- matrix(c(correlationOrig$cor, correlationOrig$p), ncol = 2)
colnames(m) <- c("cor", "p")
m.df <- data.frame(m)
s <- m.df[m.df$p < 0.05, ]
points(dim(s)[1], 0, pch = 20, col = "#9D2B49", cex = 5)
path<-getwd()
cat("Plot was saved in ",paste(path,"/",fileName,sep=""),"\n")
dev.off()
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.