Nothing
####################################################################
## Author: Bjarne Johannessen, Anita Sveen and Rolf I. Skotheim
## Maintainer: Bjarne Johannessen <bjarnej@ifi.uio.no>
## License: Artistic 2.0
## Part of the TIN package
####################################################################
## Function for creating a scatterPlot that compares the amount of splicing
## factor genes for which expression levels are significant positively and
## negatively correlated with the total relative amounts of aberrant exon
## usage per sample.
posNegCorrPlot <- function(fileName, tra, geneSummaries,
splicingFactors, randomGeneSets, traPermutations)
{
fmat2 <- str_sub(fileName, -2, -1)
fmat3 <- str_sub(fileName, -3, -1)
fmat4 <- str_sub(fileName, -4, -1)
spliceGeneSum <-
geneSummaries[rownames(geneSummaries) %in% splicingFactors[, 1], ]
x <- vector('numeric', traPermutations)
y <- vector('numeric', traPermutations)
for (i in seq_len(traPermutations)) {
perm <- sample(tra)
corPerm <- corAndPvalue(t(spliceGeneSum[, seq_along(perm)]),
perm, alternative="two.sided")
m <- matrix(c(corPerm$cor, corPerm$p), ncol = 2)
colnames(m) <- c("cor", "p")
m.df <- data.frame(m)
s <- m.df[m.df$p < 0.05, ]
x[i] <- length(s$cor[s$cor < 0])
y[i] <- length(s$cor[s$cor > 0])
}
if (fmat3 == 'png') {
png(fileName)
} else if (fmat3 == 'jpg' || fmat4 == 'jpeg') {
jpeg(fileName)
} else if (fmat3 == 'eps' || fmat2 == 'ps') {
postscript(fileName)
} else if (fmat3 == 'pdf') {
pdf(fileName)
} else if (fmat3 == 'bmp') {
bmp(fileName)
}
xx <- vector('numeric', randomGeneSets)
yy <- vector('numeric', randomGeneSets)
for (i in 1:randomGeneSets) {
randGeneSummaries <- geneSummaries[sample(nrow(geneSummaries),
length(splicingFactors[, 1])), ]
corPerm <- corAndPvalue(t(randGeneSummaries[, seq_along(tra)]),
tra, alternative="two.sided")
g <- matrix(c(corPerm$cor, corPerm$p), ncol = 2)
colnames(g) <- c("cor", "p")
g.df <- data.frame(g)
gs <- g.df[g.df$p < 0.05, ]
xx[i] <- length(gs$cor[gs$cor < 0])
yy[i] <- length(gs$cor[gs$cor > 0])
}
plot(x, y, pch = 20, col = "#2B3175",
xlim = c(0, length(splicingFactors[, 1])),
ylim = c(0, round(max(y, yy) + 25, digits = -1)), frame.plot = FALSE,
ylab = "No. of significant positively correlated genes",
xlab = "No. of significant negatively correlated genes",
axes = FALSE, cex = 2.0)
axis(1, pos = 0, at = seq(0, length(splicingFactors[, 1]), by = 50),
labels = seq(0, length(splicingFactors[, 1]), by = 50))
if (max(y, yy) > 50) {
axis(2, pos = 0, at = seq(0, round(max(y, yy) + 50, digits = -1),
by = 50), labels = seq(0, round(max(y, yy) + 50, digits = -1),
by = 50))
} else {
axis(2, pos = 0, at = seq(0, 50, by = 10),
labels = seq(0, 50, by = 10))
}
points(xx, yy, pch = 20, col = "#7292CB",
xlim = c(0, length(splicingFactors[, 1])), cex = 2.0)
correlationOrig <- corAndPvalue(t(spliceGeneSum[, 1:length(tra)]),
tra, alternative = "two.sided")
m <- matrix(c(correlationOrig$cor, correlationOrig$p), ncol=2)
colnames(m) <- c("cor", "p")
m.df <- data.frame(m)
gs <- m.df[m.df$p < 0.05, ]
points(length(gs$cor[gs$cor<0]), length(gs$cor[gs$cor>0]),
pch = 20, col = "#9D2B49", cex = 3)
path<-getwd()
cat("Plot was saved in ",paste(path,"/",fileName,sep=""),"\n")
dev.off()
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.