Description Usage Arguments Value Author(s) Examples
Identify and return significantly-enriched terms for each gene module in a Celda object or a SingleCellExperiment object. Performs gene set enrichment analysis for Celda identified modules using the enrichr.
1 2 3 4 5 6 7 8 9 10 11 12 13 | geneSetEnrich(x, ...)
## S4 method for signature 'SingleCellExperiment'
geneSetEnrich(
x,
useAssay = "counts",
altExpName = "featureSubset",
databases,
fdr = 0.05
)
## S4 method for signature 'matrix'
geneSetEnrich(x, celdaModel, databases, fdr = 0.05)
|
x |
A numeric matrix of counts or a
SingleCellExperiment
with the matrix located in the assay slot under |
... |
Ignored. Placeholder to prevent check warning. |
useAssay |
A string specifying which assay
slot to use if |
altExpName |
The name for the altExp slot to use. Default "featureSubset". |
databases |
Character vector. Name of reference database. Available databases can be viewed by listEnrichrDbs. |
fdr |
False discovery rate (FDR). Numeric. Cutoff value for adjusted p-value, terms with FDR below this value are considered significantly enriched. |
celdaModel |
Celda object of class |
List of length 'L' where each member contains the significantly enriched terms for the corresponding module.
Ahmed Youssef, Zhe Wang
1 2 3 4 5 6 7 8 | library(M3DExampleData)
counts <- M3DExampleData::Mmus_example_list$data
# subset 500 genes for fast clustering
counts <- counts[seq(1501, 2000), ]
# cluster genes into 10 modules for quick demo
sce <- celda_G(x = as.matrix(counts), L = 10, verbose = FALSE)
gse <- geneSetEnrich(sce,
databases = c("GO_Biological_Process_2018", "GO_Molecular_Function_2018"))
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.