Description Usage Arguments Value Author(s) Examples
Plot a coseqResults object.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 | plot(x, ...)
## S4 method for signature 'coseqResults'
plot(
x,
y_profiles = NULL,
K = NULL,
threshold = 0.8,
conds = NULL,
average_over_conds = FALSE,
collapse_reps = "none",
graphs = c("logLike", "ICL", "profiles", "boxplots", "probapost_boxplots",
"probapost_barplots", "probapost_histogram"),
order = FALSE,
profiles_order = NULL,
n_row = NULL,
n_col = NULL,
add_lines = TRUE,
...
)
coseqGlobalPlots(object, graphs = c("logLike", "ICL"), ...)
coseqModelPlots(
probaPost,
y_profiles,
K = NULL,
threshold = 0.8,
conds = NULL,
collapse_reps = "none",
graphs = c("profiles", "boxplots", "probapost_boxplots", "probapost_barplots",
"probapost_histogram"),
order = FALSE,
profiles_order = NULL,
n_row = NULL,
n_col = NULL,
add_lines = TRUE,
...
)
|
x |
An object of class |
... |
Additional optional plotting arguments (e.g., xlab, ylab, use_sample_names, facet_labels) |
y_profiles |
y (n x q) matrix of observed profiles for n
observations and q variables to be used for graphing results (optional for
|
K |
If desired, the specific model to use for plotting (or the specific cluster number(s)
to use for plotting in the case of |
threshold |
Threshold used for maximum conditional probability; only observations with maximum conditional probability greater than this threshold are visualized |
conds |
Condition labels, if desired |
average_over_conds |
If |
collapse_reps |
If |
graphs |
Graphs to be produced, one (or more) of the following:
|
order |
If |
profiles_order |
If |
n_row |
Number of rows for plotting layout of line plots and boxplots of profiles.
Note that if |
n_col |
Number of columns for plotting layout of line plots and boxplots of profiles.
Note that if |
add_lines |
If |
object |
An object of class |
probaPost |
Matrix or data.frame of dimension (n x K) containing the conditional probilities of cluster membership for n genes in K clusters arising from a mixture model |
Named list of plots of the coseqResults
object.
Andrea Rau, Cathy Maugis-Rabusseau
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 | ## Simulate toy data, n = 300 observations
set.seed(12345)
countmat <- matrix(runif(300*4, min=0, max=500), nrow=300, ncol=4)
countmat <- countmat[which(rowSums(countmat) > 0),]
conds <- rep(c("A","B","C","D"), each=2)
## Run the Normal mixture model for K = 2,3,4
run_arcsin <- coseq(object=countmat, K=2:4, iter=5, transformation="arcsin",
model="Normal", seed=12345)
run_arcsin
## Plot and summarize results
plot(run_arcsin)
summary(run_arcsin)
## Compare ARI values for all models (no plot generated here)
ARI <- compareARI(run_arcsin, plot=FALSE)
## Compare ICL values for models with arcsin and logit transformations
run_logit <- coseq(object=countmat, K=2:4, iter=5, transformation="logit",
model="Normal")
compareICL(list(run_arcsin, run_logit))
## Use accessor functions to explore results
clusters(run_arcsin)
likelihood(run_arcsin)
nbCluster(run_arcsin)
ICL(run_arcsin)
## Examine transformed counts and profiles used for graphing
tcounts(run_arcsin)
profiles(run_arcsin)
## Run the K-means algorithm for logclr profiles for K = 2,..., 20
run_kmeans <- coseq(object=countmat, K=2:20, transformation="logclr",
model="kmeans")
run_kmeans
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.