Description Usage Arguments Value Author(s) References See Also Examples
Runs snm
on a deSet object based on the null and full models in
deSet
. See snm
for additional details
on the algorithm.
1 2 3 4 |
object |
|
int.var |
|
... |
Additional arguments for |
apply_snm
returns a deSet
object where
assayData (the expression data) that has been passed to apply_snm is replaced
with the normalized data that snm
returns. Specifically,
exprs(object)
is replaced by $norm.dat
from snm
,
where object
is the deSet
object.
John Storey, Andrew Bass
Mechan BH, Nelson PS, Storey JD. Supervised normalization of microarrays. Bioinformatics 2010;26:1308-1315.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 | # simulate data
library(snm)
singleChannel <- sim.singleChannel(12345)
data <- singleChannel$raw.data
# create deSet object using build_models (can use ExpressionSet see manual)
cov <- data.frame(grp = singleChannel$bio.var[,2])
full_model <- ~grp
null_model <- ~1
# create deSet object using build_models
de_obj <- build_models(data = data, cov = cov, full.model = full_model,
null.model = null_model)
# run snm using intensity-dependent adjustment variable
de_snm <- apply_snm(de_obj, int.var = singleChannel$int.var,
verbose = FALSE, num.iter = 1)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.