Nothing
dispDeviance <- function(y, design=NULL, offset=NULL, interval=c(0,4), tol=1e-5, min.row.sum=5, subset=10000, AveLogCPM=NULL, robust=FALSE, trace=FALSE)
# Deviance estimator of common dispersion
# Gordon Smyth, Davis McCarthy
# 26 Jan 2011. Last modified 30 Sep 2012.
{
# Check y
y <- as.matrix(y)
# Check design
if(is.null(design)) {
design <- matrix(1,ncol(y),1)
rownames(design) <- colnames(y)
colnames(design) <- "Intercept"
} else {
design <- as.matrix(design)
}
# Check offset
if(is.null(offset)) offset <- 0
offset <- expandAsMatrix(offset,dim(y))
if(min(interval)<0) stop("please give a non-negative interval for the dispersion")
# Apply row sum filter
small.row.sum <- rowSums(y)<min.row.sum
if(any(small.row.sum)) {
y <- y[!small.row.sum,,drop=FALSE]
offset <- offset[!small.row.sum,,drop=FALSE]
}
if(nrow(y)<1) stop("no data rows with required number of counts")
# Apply systematic subset by AveLogCPM
if(!is.null(subset) && subset<=nrow(y)/2) {
if(is.null(AveLogCPM)) AveLogCPM <- aveLogCPM(y,offset=offset)
i <- systematicSubset(subset,AveLogCPM)
y <- y[i,,drop=FALSE]
offset <- offset[i,,drop=FALSE]
}
Df <- ncol(y)-ncol(design)
if(robust) {
p <- pchisq(Df, df=Df)
bias <- function(x) quantile(x,p)-Df
} else {
bias <- function(x) mean(x)-Df
}
# Function to be optimized
fun <- function(par,y,design,offset) {
fit <- glmFit(y,design,dispersion=par^4,offset=offset,prior.count=0)
if(trace) cat(par^4,bias(fit$deviance),"\n")
bias(fit$deviance)
}
if(fun(interval[1],y,design,offset)<=0) {
return(interval[1])
}
if(fun(interval[2],y,design,offset)>0) {
warning("dispersion estimate above interval upper limit")
return(interval[2])
}
if(trace) cat("Dispersion, mean(deviance)-df\n")
out <- uniroot(f=fun,interval=interval^0.25,y=y,design=design,offset=offset,tol=tol)
out$root^4
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.