Nothing
#---------------------------#
#---------- REFIT ----------#
#---------------------------#
# *** refit transcript abundances under poisson loss without penalization *** given known design (transcripts)
# INPUT: - count vector y
# - design X, ie. found transcript structures with normalization
# - initialization beta0, here the shrinked values of abundances
# - delta smoothing loss
# - optimization parameters iterpoisson and tolpoisson
# - 'solver_refit type of solver'
# OUTPUT: - beta.refit the values of abundances
refitPoisson <- function(y, X, beta0, delta, iterpoisson, tolpoisson, solver_refit, verbosepath){
# if(solver_refit=='OLD'){
# beta.refit <- spams_flipflop.solverPoisson(y=y, X=X, beta0=beta0, weights=rep(0, length(beta0)), delta=delta, max_iter=iterpoisson, tol=tolpoisson)
# }
W0 <- beta0
if(solver_refit=='NEW'){
seqdelt <- 10^seq(0, log10(delta), length=(-floor(log10(delta))+1))
for(deltaloop in seqdelt){
beta.refit <- spams_flipflop.fistaFlat(Y=y, X=X, W0=W0, loss='poisson',regul='none', delta=deltaloop, pos=TRUE, tol=tolpoisson, max_it=iterpoisson, ista=TRUE, linesearch_mode=2, L0=1e-5, verbose=verbosepath)
W0 <- beta.refit
}
}
return(beta.refit)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.