Nothing
## ----bioc_installation, eval = F----------------------------------------------
# if (!requireNamespace("BiocManager", quietly = TRUE))
# install.packages("BiocManager")
#
# BiocManager::install("gemini")
## ----github_installation, eval = F--------------------------------------------
# if (!requireNamespace("devtools", quietly = TRUE))
# install.packages("devtools")
#
# devtools::install_github("foo/bar", build_opts = c("--no-resave-data", "--no-manual"), build_vignettes = TRUE)
## ----load_data----------------------------------------------------------------
library("gemini")
data("counts", "guide.annotation", "sample.replicate.annotation", package = "gemini")
## ----table1_counts, echo = TRUE-----------------------------------------------
knitr::kable(head(counts[,1:5]), caption = "Counts matrix", align = 'l')
## ----table23_annotations, echo = TRUE-----------------------------------------
knitr::kable(head(sample.replicate.annotation), caption = "Sample/replicate annotations")
knitr::kable(head(guide.annotation[,1:3]), caption = "Guide/gene annotation")
## ----create_input-------------------------------------------------------------
Input <- gemini_create_input(counts.matrix = counts,
sample.replicate.annotation = sample.replicate.annotation,
guide.annotation = guide.annotation,
ETP.column = 'pDNA',
gene.column.names = c("U6.gene", "H1.gene"),
sample.column.name = "samplename",
verbose = TRUE)
# Note: ETP column can also be specified by column index
# (e.g. ETP.column = c(1))
## ----calc_lfc-----------------------------------------------------------------
Input %<>% gemini_calculate_lfc(normalize = TRUE,
CONSTANT = 32)
## ----initialize---------------------------------------------------------------
Model <- gemini_initialize(Input = Input,
nc_gene = "CD81",
pattern_join = ';',
pattern_split = ';',
cores = 1,
verbose = TRUE)
## ----inference, eval = F------------------------------------------------------
# Model %<>% gemini_inference(cores = 1,
# verbose = FALSE)
## ----inference_shortcut, eval = T, echo = F-----------------------------------
data("Model", package = "gemini") # This is the result of running the above line
## ----mae_plot, eval=TRUE, fig.align='center'----------------------------------
gemini_plot_mae(Model)
## ----gemini_score-------------------------------------------------------------
# Use non-interacting gene pairs as nc_pairs.
# A caveat here is that this set is constructed only using negative controls!
# This probably leads to biased sampling of the null distribution,
# thereby overestimating the number of significant hits, but still is useful in this case.
nc_pairs <- grep("6T|HPRT", rownames(Model$s), value = TRUE)
# An example of some nc_pairs...
head(nc_pairs, n = 5)
Score <- gemini_score(Model = Model,
pc_gene = "EEF2",
nc_pairs = nc_pairs)
## ----table4_score, echo = TRUE------------------------------------------------
knitr::kable(Score$strong[order(Score$strong[,"A549"], decreasing = TRUE)[1:10],], caption = "Strong scores for top 10 interactions from A549 in all samples")
## ----table5_fdr, echo = TRUE--------------------------------------------------
knitr::kable(Score$fdr_strong[order(Score$fdr_strong[,"A549"], decreasing = FALSE)[1:10],], caption = "FDRs for top 10 interactions in A549")
## ----boxplot1, eval = TRUE, fig.width = 6, fig.height = 4, fig.align='center'----
gemini_boxplot(Model = Model,
g = "BRCA2",
h = "PARP1",
nc_gene = "CD81",
sample = "A549",
show_inference = TRUE,
identify_guides = TRUE
)
## ----boxplot2, eval = TRUE, fig.width = 6, fig.height = 4, fig.align='center'----
gemini_boxplot(Model = Model,
g = "BRCA2",
h = "PARP1",
nc_gene = "CD81",
sample = "A549",
show_inference = TRUE,
color_x = TRUE
)
## ----session_info-------------------------------------------------------------
sessionInfo()
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.