gespeR-package: Package: Gene-Specific Phenotype EstimatoR

Description Author(s) References See Also Examples

Description

This package provides a model to deconvolute off-target confounded RNAi knockdown phentypes, and methods to investigate concordance between ranked lists of (estimated) phenotypes. The regularized linear regression model can be fitted using two different strategies. (a) Cross-validation over regularization parameters optimising the mean-squared-error of the model and (b) stability selection of covariates (genes) based on a method by Nicolai Meinshausen et al.

Author(s)

Fabian Schmich | Computational Biology Group, ETH ZURICH | fabian.schmich@bsse.ethz.ch

References

Fabian Schmich et. al, Deconvoluting Off-Target Confounded RNA Interference Screens (2014).

See Also

gespeR

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
# Read phenotypes
phenos <- lapply(LETTERS[1:4], function(x) {
  sprintf("Phenotypes_screen_%s.txt", x)
  })
phenos <- lapply(phenos, function(x) {
  Phenotypes(system.file("extdata", x, package="gespeR"),
             type = "SSP",
             col.id = 1,
             col.score = 2)
})  
phenos
plot(phenos[[1]])

# Read target relations
tr <- lapply(LETTERS[1:4], function(x) {
  sprintf("TR_screen_%s.rds", x)
})
tr <- lapply(tr, function(x) {
  TargetRelations(system.file("extdata", x, package="gespeR"))
})
tr[[1]]
tempfile <- paste(tempfile(pattern = "file", tmpdir = tempdir()), ".rds", sep="")
tr[[1]] <- unloadValues(tr[[1]], writeValues = TRUE, path = tempfile)
tr[[1]]
tr[[1]] <- loadValues(tr[[1]])
tr[[1]]

# Fit gespeR models with cross validation
res.cv <- lapply(1:length(phenos), function(i) {
  gespeR(phenotypes = phenos[[i]],
         target.relations = tr[[i]],
         mode = "cv",
         alpha = 0.5,
         ncores = 1)
})
summary(res.cv[[1]])
res.cv[[1]]
plot(res.cv[[1]])

# Extract scores
ssp(res.cv[[1]])
gsp(res.cv[[1]])
head(scores(res.cv[[1]]))

# Fit gespeR models with stability selection
res.stab <- lapply(1:length(phenos), function(i) {
  gespeR(phenotypes = phenos[[i]],
         target.relations = tr[[i]],
         mode = "stability",
         nbootstrap = 100,
         fraction = 0.67,
         threshold = 0.75,
         EV = 1,
         weakness = 0.8,
         ncores = 1)
})
summary(res.stab[[1]])
res.stab[[1]]
plot(res.stab[[1]])

# Extract scores
ssp(res.stab[[1]])
gsp(res.stab[[1]])
head(scores(res.stab[[1]]))

# Compare concordance between stability selected GSPs and SSPs
conc.gsp <- concordance(lapply(res.stab, gsp))
conc.ssp <- concordance(lapply(res.stab, ssp))

pl.gsp <- plot(conc.gsp) + ggtitle("GSPs\n")
pl.ssp <- plot(conc.ssp) + ggtitle("SSPs\n")

if (require(grid)) {
  grid.newpage()
  pushViewport(viewport(layout = grid.layout(1, 2) ) )
  print(pl.gsp, vp = viewport(layout.pos.row = 1, layout.pos.col = 1))
  print(pl.ssp, vp = viewport(layout.pos.row = 1, layout.pos.col = 2))
} else {
  plot(pl.gsp)
  plot(pl.ssp)
}

gespeR documentation built on Nov. 8, 2020, 5:35 p.m.