Description Usage Arguments Value See Also Examples
The function returns a vector with the baseline values of each node in the network computed with the "doILP" function.
1 | getBaseline(res, n, allpos=FALSE)
|
res |
Result returned by the "doILP" or "doILP_timeSeries" function. |
n |
Integer: the number of nodes of the inferred network. |
allpos |
Logical: should all variables be positive? Corresponds to learning only activating edges. Default: FALSE. |
Numeric matrix: the adjacency matrix of the network.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 | n <- 3 # number of genes
K <- 4 # number of experiments
T_ <- 4 # number of time points
# generate random observation matrix
obs <- array(rnorm(n*K*T_), c(n,K,T_))
baseline <- c(0.75, 0, 0)
delta <- rep(0.75, n)
# perturbation vector, entry is 0 if gene is inactivated and 1 otherwise
b <- c(0,1,1, # perturbation exp1: gene 1 perturbed, gene 2,3 unperturbed
1,0,1, # perturbation exp2: gene 2 perturbed, gene 1,3 unperturbed
1,1,0, # perturbation exp3....
1,1,1)
delta_type <- "perGene"
lambda <- 1/10
annot <- getEdgeAnnot(n)
#infer the network
res <- doILP(obs, delta, lambda, b, n, K, T_, annot, delta_type, prior=NULL, sourceNode=NULL,
sinkNode=NULL, all.int=FALSE, all.pos=FALSE, flag_time_series=TRUE)
# make the adjacency matrix
adja <- getBaseline(res, n)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.