Description Usage Arguments Value Author(s) References Examples
Identifying miRNA sponge interactions using spongeMethod. We implement seven popular methods (miRHomology, pc, sppc, ppc, hermes, muTaME, and cernia) to identify miRNA sponge interactions.
1 2 3 4 | spongeMethod(miRTarget, ExpData = NULL, mres = NULL, minSharedmiR = 3,
poscorcutoff = 0, num_perm = 100, padjustvaluecutoff = 0.01,
padjustmethod = "BH", senscorcutoff = 0.3, scorecutoff = 0.5,
method = c("miRHomology", "pc", "sppc", "ppc", "hermes", "muTaME", "cernia"))
|
miRTarget |
Putative miRNA-target interactions. Required option for method "miRHomology", "pc", "sppc", "ppc", "hermes", "muTaME" and "cernia". |
ExpData |
An input expression data frame, the columns are genes and the rows are samples. Required option for method "pc", "sppc", "ppc", "hermes" and "cernia". |
mres |
Putative MiRNA Response Elements (mres) data frame, each row contains five elements: Mirna, Target, energy, gap_l, gap_r. Required option for method "muTaME" and "cernia". |
minSharedmiR |
The minimum number of shared miRNAs between targets. Required option for method "miRHomology", "pc", "sppc", "ppc", "hermes", "muTaME" and "cernia". |
poscorcutoff |
A cutoff value of positive correlation. Required option for method "pc", "sppc" and "cernia". |
num_perm |
The number of permutations. Required option for method "ppc" and "hermes". |
padjustvaluecutoff |
A cutoff value of adjusted p-values. Required option for method "miRHomology", "pc", "sppc", "ppc", "hermes", "muTaME" and "cernia". |
padjustmethod |
Adjusted method of p-values, can select one of "holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", "none". Required option for method "miRHomology", "pc", "sppc", "ppc", "hermes", "muTaME" and "cernia". |
senscorcutoff |
A cutoff value of sensitivity partial pearson correlation. Required option for method "sppc". |
scorecutoff |
A cutoff value of normalized score (range from 0 to 1). Required option for method "muTaME" and "cernia". |
method |
Select a method for identifying miRNA sponge interactions, can select one of "miRHomology", "pc", "sppc", "ppc", "hermes", "muTaME", "cernia". |
A list of identified miRNA sponge interactions.
Junpeng Zhang (https://www.researchgate.net/profile/Junpeng_Zhang3)
1. Le TD, Zhang J, Liu L, et al. Computational methods for identifying miRNA sponge interactions. Brief Bioinform., 2017, 18(4):577-590.
2. Li JH, Liu S, Zhou H, et al. starBase v2.0: decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Res., 2014, 42(Database issue):D92-7.
3. Sarver AL, Subramanian S. Competing endogenous RNA database. Bioinformation, 2012, 8(15):731-3.
4. Zhou X, Liu J, Wang W, Construction and investigation of breast-cancer-specific ceRNA network based on the mRNA and miRNA expression data. IET Syst Biol., 2014, 8(3):96-103.
5. Xu J, Li Y, Lu J, et al. The mRNA related ceRNA-ceRNA landscape and significance across 20 major cancer types. Nucleic Acids Res., 2015, 43(17):8169-82.
6. Paci P, Colombo T, Farina L, Computational analysis identifies a sponge interaction network between long non-coding RNAs and messenger RNAs in human breast cancer. BMC Syst Biol., 2014, 8:83.
7. Sumazin P, Yang X, Chiu HS, et al. An extensive microRNA-mediated network of RNA-RNA interactions regulates established oncogenic pathways in glioblastoma. Cell, 2011, 147(2):370-81.
8. Tay Y, Kats L, Salmena L, et al. Coding-independent regulation of the tumor suppressor PTEN by competing endogenous mRNAs. Cell, 2011, 147(2):344-57.
9. Sardina DS, Alaimo S, Ferro A, et al. A novel computational method for inferring competing endogenous interactions. Brief Bioinform., 2016, DOI: 10.1093/bib/bbw084.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | # Obtain expression data file "ExpData.csv" in csv format
ExpDatacsv <- system.file("extdata","ExpData.csv",package="miRsponge")
ExpData <- read.csv(ExpDatacsv, header=FALSE, sep=",")
# Obtain miRNA-target interaction data file "miR2Target.csv" in csv format
miR2Target <- system.file("extdata", "miR2Target.csv", package="miRsponge")
miRTarget <- read.csv(miR2Target, header=TRUE, sep=",")
# miRHomology method
miRHomologyceRInt <- spongeMethod(miRTarget, method = "miRHomology")
# pc method
pcceRInt <- spongeMethod(miRTarget, ExpData, method = "pc")
# sppc method
sppcceRInt <- spongeMethod(miRTarget, ExpData, senscorcutoff = 0.1, method = "sppc")
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.