Nothing
#########################################################
# Compute marginal density for Y=N+S1+S2
#########################################################
.margDist_2S <- function( mosaicsEst, tagCount, pNfit, k=3 )
{
# extract parameters
a <- mosaicsEst@a
mu_est <- mosaicsEst@muEst
b_est <- a / mu_est
b1 <- mosaicsEst@b1
c1 <- mosaicsEst@c1
b2 <- mosaicsEst@b2
c2 <- mosaicsEst@c2
Yori <- tagCount
# use only Y >= k
Y = Yori - k
Y[which(Y<0)] = -1
# round mu to the nearest hundredth
mu_round <- round(mu_est,2)
if( length(which(Y<0))>0 ) mu_round[which(Y<0)] <- 0
mu_round_U <- unique(mu_round)
#n_mu_U <- length(mu_round_U)
# prob of N using rounding mu for prob of S1 & S2
Ymax <- max(Y)
pN <- pNfit$pN
# prob of N (Yori & b_est have same length)
MDZ0 = dnbinom( Yori, size=a, b_est/(b_est+1) )
# prob of S1 & S2 (positive only when Y>=k)
pS1 = dnbinom( 0:Ymax, b1, c1/(c1+1) )
pS2 = dnbinom( 0:Ymax, b2, c2/(c2+1) )
id_Y_ge_k <- which(Y>=0)
MDG <- matrix( 0, length(Y), 2 )
MDGfit <- conv_2S( y=Y[id_Y_ge_k], mu_round=mu_round[id_Y_ge_k],
mu_round_U=mu_round_U, pN=pN, pS1=pS1, pS2=pS2 )
MDGfit <- matrix( MDGfit, nrow=2 )
MDG[ id_Y_ge_k, ] <- t(MDGfit)
MDZ1 <- MDG[,1]
MDZ2 <- MDG[,2]
# return object
MD=data.frame( cbind( MDZ0, MDZ1, MDZ2 ) )
colnames(MD)=c('MDZ0','MDZ1','MDZ2')
return(MD)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.