filter.flags: Flag proteins with a minimum signal and/or sufficient...

Description Usage Arguments Details Value Author(s) Examples

Description

In general the spectral counts (SpC) matrix of a LC-MS/MS experiment is a sparse matrix, where most of the features have very low signal. Besides, the features with low variance to mean ratio (dispersion) will be scarcely informative in a biomarker discovery experiment. Given a minimum number of spectral counts and/or a fraction of the features to be excluded by low dispersion, this function returns a vector of logicals flagging all features with values above the given thresholds.

Usage

1
filter.flags(data,minSpC=2,frac.out=0.4)

Arguments

data

A SpC matrix with proteins in the rows and samples in the columns.

minSpC

All features with SpC below this threshold will be flagged as FALSE.

frac.out

The fraction of features to be excluded, with the lowest observed dispersion. These will be flagged as FALSE.

Details

The less informative features in a SpC matrix are flagged as FALSE. Those with high enough signal and dispersion are flagged as TRUE. This vector of logicals may be used to filter the SpC matrix which is used in plots where only the relevant informattion matters, and where the high number of 0 may distort the plot and difficult its interpretation.

Value

A vector of logical values.

Author(s)

Josep Gregori

Examples

1
2
3
4
5
data(msms.dataset)
fraction <- 0.3
msnset <- pp.msms.data(msms.dataset)
flags <- filter.flags(exprs(msnset),minSpC=2,frac.out=fraction)
cat("\nNumber of informative features:",sum(flags),"\n")


Search within the msmsEDA package
Search all R packages, documentation and source code

Questions? Problems? Suggestions? or email at ian@mutexlabs.com.

Please suggest features or report bugs with the GitHub issue tracker.

All documentation is copyright its authors; we didn't write any of that.