Nothing
# ######################## #
# MCMC Sampling: Framework #
# ######################## #
# Method description: this method provides the framework for the MCMC sampling
# parameters: see runMCMC.m
mcmc = function(ratio,nrRuns,theta_init,changeList,logitprior.theta,prior.hidden,maxsteps_eminem,sd_val,signals,effects,changeHfreq,probVal,ep){
# initialize the lists where the results of each sampling step are stored
theta_list = list()
graph2_list = list()
ll_list = list()
pP_list = list()
nrSteps_list = list()
acc_list = list()
hidden_list = list()
# the initial signals graph corresponds to the sampled graph, not to the local maximum -> it has to be optimized, too + the corresponding values have to be calculated
graph2_i = theta_init
res_EMiNEM = EMforMCMC(ratio,graph2_i,logitprior.theta,prior.hidden,maxsteps_eminem)
theta_i = res_EMiNEM[["res"]]
nrSteps_i = res_EMiNEM[["nrSteps"]]
# calculate the log-likelihood for the local maximum
ll_i = calcLikelihood(ratio,theta_i,prior.hidden)
# calculate the prior for the local maximum -> see the paper for a derivation of this formula
pP_i = sum(theta_i[changeList]*logitprior.theta[changeList])
# set the initial acceptance value to "accepted"
acc_i = 1
# add the initial effects graph prior to the corresponding result-list
hidden_list[[1]] = prior.hidden
# initialize count variable for sampling
i = 1
# start the sampling process
repeat{
# add the current values to the corresponding results-lists before they are changed (also the last ones BEFORE the sampling is stopped)
theta_list[[i]] = theta_i
graph2_list[[i]] = graph2_i
ll_list[[i]] = ll_i
pP_list[[i]] = pP_i
nrSteps_list[[i]] = nrSteps_i
acc_list[[i]] = acc_i
# if maximal number of runs is reached -> stop the sampling process
if (i==nrRuns) break()
# if the number of steps after which the Empirical Bayes step should be applied is reached -> update the effects graph prior and add it to its result-list
if(i%%changeHfreq==0){
prior.hidden = updateHidden(ratio,prior.hidden,theta_list,signals,effects,i,changeHfreq)
hidden_list[[i/changeHfreq+1]] = prior.hidden
}
# conduct the sampling step -> updated values (theta_i, ll_i, ...) are returned -> update the corresponding variables
res_i = onestep_mcmc(ratio,theta_i,graph2_i,ll_i,pP_i,nrSteps_i,changeList,logitprior.theta,prior.hidden,maxsteps_eminem,sd_val,probVal,ep)
theta_i = res_i[["theta"]]
graph2_i = res_i[["graph2"]]
ll_i = res_i[["ll"]]
pP_i = res_i[["pP"]]
nrSteps_i = res_i[["nrSteps"]]
acc_i = res_i[["accepted"]]
# reduce memory?
rm("res_i")
# update count variable
i = i + 1
}
# return result-lists to the main function
return(list(theta_list=theta_list,graph2_list=graph2_list,ll_list=ll_list,pP_list=pP_list,nrSteps_list=nrSteps_list,acc_list=acc_list,hidden_list=hidden_list))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.