Description Usage Arguments Details Value Author(s) References See Also
Estimate the covariance matrix Sigma of the multivariate t-distribution with zero expectation assuming the degrees of freedom is known.
1 | estimateSigma(y, m, v, maxIter = 100, epsilon = 1e-06, verbose = FALSE)
|
y |
data matrix |
m |
degrees of freedom |
v |
scale parameter |
maxIter |
maximum number of iterations |
epsilon |
convergence criteria |
verbose |
print computation info or not |
The multivariate t-distribution is parametrized as:
y|c ~ N(mu,c*Sigma)
c ~ InvGamma(m/2,m*v/2)
Here N denotes a multivariate normal distribution, Sigma is a covariance matrix and InvGamma(a,b) is the inverse-gamma distribution with density function
f(x)=b^a exp{-b/x} x^{-a-1} /Gamma(a)
In this application mu equals zero, and m is the degrees of freedom.
Sigma |
Estimated covariance matrix for y |
iter |
Number of iterations |
Magnus Astrand
Hastie, T., Tibshirani, R., and Friedman, J. (2001). The Elements of Statistical Learning, volume 1. Springer, first edition.
Kristiansson, E., Sjogren, A., Rudemo, M., Nerman, O. (2005). Weighted Analysis of Paired Microarray Experiments. Statistical Applications in Genetics and Molecular Biology 4(1)
Astrand, M. et al. (2007a). Improved covariance matrix estimators for weighted analysis of microarray data. Journal of Computational Biology, Accepted.
Astrand, M. et al. (2007b). Empirical Bayes models for multiple-probe type arrays at the probe level. Bioinformatics, Submitted 1 October 2007.
estimateSigmaMV
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.