Description Usage Arguments Details Value Author(s) References See Also
Estimate the parameters Sigma, m and v of the multivariate t-distribution with zero expectation, where v is modeled as smooth function of a covariate.
1 2 3 | estimateSigmaMVbeta(y, x, maxIter = 200, epsilon = 1e-06,
verbose = FALSE, nknots = 10, nOut = 2000, nIn = 4000,
iterInit = 3, br = NULL)
|
y |
Data matrix |
x |
Covariate vector |
maxIter |
Maximum number of iterations |
epsilon |
Convergence criteria |
verbose |
Print computation info or not |
nknots |
Number of knots of spline for v |
nOut |
Parameter for calculating knots, see getKnots |
nIn |
Parameter for calculating knots, see getKnots |
iterInit |
Number of iteration in when initiating Sigma |
br |
Knots, overrides nknots, n.out and n.in |
The multivariate t-distribution is parametrized as:
y|c ~ N(mu,c*Sigma)
c ~ InvGamma(m/2,m*v/2)
where v is function of the covariate x: v(x) and N denotes a multivariate normal distribution, Sigma is a covariance matrix and InvGamma(a,b) is the inverse-gamma distribution with density function
f(x)=b^a exp{-b/x} x^{-a-1} /Gamma(a)
A cubic spline is used to parameterize the smooth function v(x)
v(x)=exp{H(x)^T beta}
where H:R->R^(2p-1) is a set B-spline basis functions for a given set of p interior spline-knots, see chapter 5 of Hastie et al. (2001). In this application mu equals zero, and m is the degrees of freedom.
For details about the model see Kristiansson et al. (2005), Astrand et al. (2007a,2007b).
Sigma |
Estimated covariance matrix for y |
m |
Estimated shape parameter for inverse-gamma prior for gene variances |
v |
Estimated scale parameter curve for inverse-gamma prior for gene variances |
converged |
T if the EM algorithms converged |
iter |
Number of iterations |
modS2 |
Moderated estimator of gene-specific variances |
histLogS2 |
Histogram of log(s2) where s2 is the ordinary variance estimator |
fittedDensityLogS2 |
The fitted density for log(s2) |
logs2 |
Variance estimators, logged with base 2. |
beta |
Estimated parameter vector beta of spline for v(x) |
knots |
The knots used in spline for v(x) |
x |
The input vector covariate vector x |
Magnus Astrand
Hastie, T., Tibshirani, R., and Friedman, J. (2001). The Elements of Statistical Learning, volume 1. Springer, first edition.
Kristiansson, E., Sjogren, A., Rudemo, M., Nerman, O. (2005). Weighted Analysis of Paired Microarray Experiments. Statistical Applications in Genetics and Molecular Biology 4(1)
Astrand, M. et al. (2007a). Improved covariance matrix estimators for weighted analysis of microarray data. Journal of Computational Biology, Accepted.
Astrand, M. et al. (2007b). Empirical Bayes models for multiple-probe type arrays at the probe level. Bioinformatics, Submitted 1 October 2007.
plw, lmw
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.