Nothing
#' proBatch: A package for diagnostics and correction of batch effects,
#' primarily in proteomics
#'
#' The proBatch package contains functions for analyzing and correcting batch
#' effects (unwanted technical variation) from high-thoughput experiments.
#' Although the package has primarily been developed for mass spectrometry
#' proteomics (DIA/SWATH), it has been designed be applicable to most omic data
#' with minor adaptations.
#' It addresses the following needs:
#' \itemize{ \item prepare the data for analysis
#' \item Visualize batch effects in sample-wide and feature-level;
#' \item Normalize and correct for batch effects.
#' }
#'
#' To learn more about proBatch, start with the vignettes:
#' \code{browseVignettes(package = "proBatch")}
#'
#' @section Section:
#' Common arguments to the functions.
#'
#' @param df_long data frame where each row is a single feature in a single
#' sample. It minimally has a \code{sample_id_col}, a \code{feature_id_col}
#' and a \code{measure_col}, but usually also an \code{m_score} (in OpenSWATH
#' output result file). See \code{help("example_proteome")} for more details.
#' @param data_matrix features (in rows) vs samples (in columns) matrix, with
#' feature IDs in rownames and file/sample names as colnames.
#' See "example_proteome_matrix" for more details (to call the description,
#' use \code{help("example_proteome_matrix")})
#' @param sample_annotation data frame with:
#' \enumerate{ \item \code{sample_id_col} (this can be repeated as row names)
#' \item biological covariates
#' \item technical covariates (batches etc) }.
#' See \code{help("example_sample_annotation")}
#' @param sample_id_col name of the column in \code{sample_annotation} table,
#' where the filenames (colnames of the \code{data_matrix} are found).
#' @param measure_col if \code{df_long} is among the parameters, it is the
#' column with expression/abundance/intensity; otherwise, it is used
#' internally for consistency.
#' @param feature_id_col name of the column with feature/gene/peptide/protein
#' ID used in the long format representation \code{df_long}. In the wide
#' formatted representation \code{data_matrix} this corresponds to the row
#' names.
#' @param batch_col column in \code{sample_annotation} that should be used for
#' batch comparison (or other, non-batch factor to be mapped to color in plots).
#' @param order_col column in \code{sample_annotation} that determines sample
#' order. It is used for in initial assessment plots
#' (\link{plot_sample_mean_or_boxplot}) and feature-level diagnostics
#' (\link{feature_level_diagnostics}). Can be `NULL`
#' if sample order is irrelevant (e.g. in genomic experiments). For more
#' details,
#' order definition/inference, see \link{define_sample_order} and
#' \link{date_to_sample_order}
#' @param facet_col column in \code{sample_annotation} with a batch factor to
#' separate plots into facets; usually 2nd to \code{batch_col}. Most meaningful
#' for multi-instrument MS experiments (where each instrument has its own
#' order-associated effects (see \code{order_col}) or simultaneous examination
#' of two batch factors (e.g. preparation day and measurement day).
#' For single-instrument case should be set to `NULL`
#' @param color_by_batch (logical) whether to color points and connecting lines
#' by batch factor as defined by \code{batch_col}.
#' @param peptide_annotation long format data frame with peptide ID and their
#' corresponding protein and/or gene annotations.
#' See \code{help("example_peptide_annotation")}.
#' @param color_scheme a named vector of colors to map to \code{batch_col},
#' names corresponding to the levels of the factor. For continuous variables,
#' vector doesn't need to be named.
#' @param color_list list, as returned by \code{sample_annotation_to_colors},
#' where each item contains a color vector for each factor to be mapped to the
#' color.
#' @param factors_to_plot vector of technical and biological covariates to be
#' plotted in this diagnostic plot (assumed to be present in
#' \code{sample_annotation})
#' @param protein_col column where protein names are specified
#' @param no_fit_imputed (logical) whether to use imputed (requant) values, as flagged in
#' \code{qual_col} by \code{qual_value} for data transformation
#' @param qual_col column to color point by certain value denoted
#' by \code{color_by_qual_value}. Design with inferred/requant values in
#' OpenSWATH output data,
#' which means argument value has to be set to \code{m_score}.
#' @param qual_value value in \code{qual_col} to color. For OpenSWATH data,
#' this argument value has to be set to \code{2} (this is an \code{m_score}
#' value for imputed values (requant values).
#' @param plot_title title of the plot (e.g., processing step + representation
#' level (fragments, transitions, proteins) + purpose (meanplot/corrplot etc))
#' @param keep_all when transforming the data (normalize, correct) - acceptable
#' values: all/default/minimal (which set of columns be kept).
#' @param theme ggplot theme, by default \code{classic}. Can be easily overriden
#' @param filename path where the results are saved.
#' If null the object is returned to the active window;
#' otherwise, the object is save into the file. Currently only
#' pdf and png format is supported
#' @param width option determining the output image width
#' @param height option determining the output image width
#' @param units units: 'cm', 'in' or 'mm'
#'
#' @import dplyr
#' @import ggfortify
#' @import ggplot2
#' @import reshape2
#' @import lazyeval
#' @importFrom corrplot corrplot.mixed
#' @importFrom grDevices colorRampPalette
#' @importFrom grDevices png pdf dev.off
#' @importFrom lubridate is.POSIXct
#' @importFrom magrittr %>%
#' @importFrom pheatmap pheatmap
#' @importFrom preprocessCore normalize.quantiles
#' @importFrom pvca pvcaBatchAssess
#' @importFrom purrr pmap negate map
#' @importFrom RColorBrewer brewer.pal brewer.pal.info
#' @importFrom rlang :=
#' @importFrom rlang !!
#' @importFrom rlang !!!
#' @importFrom rlang sym syms
#' @importFrom sva ComBat
#' @importFrom tidyr complete nest unnest
#' @importFrom utils combn
#' @importFrom scales brewer_pal
#' @importFrom stats as.formula complete.cases cor dist hclust sd
#' @importFrom stats ksmooth loess median
#' @importFrom stats model.matrix prcomp predict reformulate setNames
#' @importFrom tibble remove_rownames rownames_to_column column_to_rownames
#' @importFrom tools file_ext
#' @importFrom viridis viridis_pal
#' @importFrom wesanderson wes_palettes
#' @importFrom WGCNA plotDendroAndColors standardColors
#'
#' @docType package
#' @name proBatch
if(getRversion() >= "2.15.1") utils::globalVariables(c( "batch_size",
"tipping.points",
"min_order_value",
"data", "batch_total", "fit", "mean_fit",
"CV_total","CV_perBatch", "diff_fit", "diff_medians", "sd",
"median_global", "median_batch", "diff_norm",
"mean_global", "mean_batch", "diff_means",
"dateTime",
"same_protein", "batch_the_same",
"median_run",
"Var1", "Var2", "label", "weights", "category",
"Step", "correlation",
"."))
NULL
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.