# R/empPvals.R In qvalue: Q-value estimation for false discovery rate control

#### Documented in empPvals

```#' @title Calculate p-values from a set of observed test statistics and
#'   simulated null test statistics
#'
#' @description Calculates p-values from a set of observed test statistics and
#'   simulated null test statistics
#'
#' @param stat A vector of calculated test statistics.
#' @param stat0 A vector or matrix of simulated or data-resampled null test
#'   statistics.
#' @param pool If FALSE, stat0 must be a matrix with the number of rows equal to
#'   the length of \code{stat}. Default is TRUE.
#'
#' @details The argument \code{stat} must be such that the larger the value is
#'   the more deviated (i.e., "more extreme") from the null hypothesis it is.
#'   Examples include an F-statistic or the absolute value of a t-statistic. The
#'   argument \code{stat0} should be calculated analogously on data that
#'   represents observations from the null hypothesis distribution. The p-values
#'   are calculated as the proportion of values from \code{stat0} that are
#'   greater than or equal to that from \code{stat}. If \code{pool=TRUE} is
#'   selected, then all of \code{stat0} is used in calculating the p-value for a
#'   given entry of \code{stat}. If \code{pool=FALSE}, then it is assumed that
#'   \code{stat0} is a matrix, where \code{stat0[i,]} is used to calculate the
#'   p-value for \code{stat[i]}. The function \code{empPvals} calculates
#'   "pooled" p-values faster than using a for-loop.
#'
#'   See page 18 of the Supporting Information in Storey et al. (2005) PNAS
#'   (\url{http://www.pnas.org/content/suppl/2005/08/26/0504609102.DC1/04609SuppAppendix.pdf})
#'    for an explanation as to why calculating p-values from pooled empirical
#'   null statistics and then estimating FDR on these p-values is equivalent to
#'   directly thresholding the test statistics themselves and utilizing an
#'   analogous FDR estimator.
#'
#' @return A vector of p-values calculated as described above.
#'
#' @references Storey JD and Tibshirani R. (2003) Statistical significance for
#'   genome-wide experiments. Proceedings of the National Academy of Sciences,
#'   100: 9440-9445.  \cr \url{http://www.pnas.org/content/100/16/9440.full}
#'
#'   Storey JD, Xiao W, Leek JT, Tompkins RG, Davis RW. (2005) Significance
#'   analysis of time course microarray experiments.  Proceedings of the
#'   National Academy of Sciences, 102 (36), 12837-12842. \cr
#'   \url{http://www.pnas.org/content/102/36/12837.full.pdf?with-ds=yes}
#'
#' @examples
#' # import data
#' data(hedenfalk)
#' stat <- hedenfalk\$stat
#' stat0 <- hedenfalk\$stat0 #vector from null distribution
#'
#' # calculate p-values
#' p.pooled <- empPvals(stat=stat, stat0=stat0)
#' p.testspecific <- empPvals(stat=stat, stat0=stat0, pool=FALSE)
#'
#' # compare pooled to test-specific p-values
#' qqplot(p.pooled, p.testspecific); abline(0,1)
#'
#' @author John D. Storey
#' @aliases empPvals
#' @keywords pvalues
#' @export
empPvals <- function(stat, stat0, pool = TRUE) {
m <- length(stat)
n <- ncol(stat0)
# Calculates p-values
if (pool == TRUE) {
if (is.matrix(stat0)) {
stat0 <- as.vector(stat0)
}
m0 <- length(stat0)
v <- c(rep(TRUE, m), rep(FALSE, m0))
v <- v[order(c(stat, stat0), decreasing = TRUE)]
u <- 1:length(v)
w <- 1:m
p <- (u[v == TRUE] - w) / m0
p <- p[rank(-stat)]
p <- pmax(p, 1/m0)
} else {
if (is.vector(stat0)) {
stop("stat0 must be a matrix.")
} else if (n == m) {
stat0 <- t(stat0)
} else if (nrow(stat0) != m){
stop("Number of rows of stat0 must equal length of stat.")
}
stat0 <- (stat0 - stat) >= 0
p <- rowMeans(stat0)
p <- pmax(p, 1 / ncol(stat0))
}
return(p)
}
```

## Try the qvalue package in your browser

Any scripts or data that you put into this service are public.

qvalue documentation built on Nov. 1, 2018, 4:44 a.m.