Description Usage Arguments Value
Preprocess input data with Principal Component Analysis method (PCA)
1 2 3 | preprocess(data, pheno = NULL, method = "pca", reg.family = "binomial",
scaleData = FALSE, cumvar.threshold = 75, out.type = "D",
penalty = 0.001, verbose = FALSE)
|
data |
An input matrix with values of independent variables (predictors). |
pheno |
A phenotype - column-vector, needed for LASSO/ridge and
|
method |
A dimensionality reduction method.
Default: |
reg.family |
A regression family.
Default: |
scaleData |
A logical variable, indicates wheither or
not scaling should be performed. Default: |
cumvar.threshold |
A threshold value for explained variance.
Default: |
out.type |
An output (phenotype) type.
Default: |
penalty |
Value of penalty parameter for LASSO/ridge regression.
Default: |
verbose |
Indicates verbosing output. Default: FALSE. |
A list of one: "S" - a data frame of predictor values.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.