Description Usage Arguments Value Examples
This function performs a gene-level meta-analysis based on combined effect sizes.
This function performs a gene-level meta-analysis based on combined effect sizes.
1 2 3 4 5 6 7 | geneTestMeta(objects, ...)
## S4 method for signature 'list'
geneTestMeta(objects, perm = 0, STT = 0.2,
weight = FALSE, cumvar.threshold = 75, out.type = "D", method = "pca",
scaleData = FALSE, asym.pval = FALSE, comb.test = "wilkinson",
penalty = 0.001, verbose = FALSE)
|
objects |
List of objects of class rqt |
... |
Additional parameters to pass to the function |
perm |
Integer indicating the number of permutations to compute p-values. Default: 0. |
STT |
Numeric indicating soft truncation threshold (STT) to convert to gamma parameter (must be <= 0.4). Needed for an optimal parameter a in Gamma-distribution. Default: 0.2. See, for example, Fridley, et al 2013: "Soft truncation thresholding for gene set analysis of RNA-seq data: Application to a vaccine study". |
weight |
Logical value. Indicates using weights (see Lee et al 2016). Default: FALSE. |
cumvar.threshold |
Numeric value indicating the explained variance threshold for PCA-like methods. Default: 75 |
out.type |
Character, indicating a type of phenotype.
Possible values: |
method |
Method used to reduce multicollinerity and account for LD.
Default: |
scaleData |
A logic parameter (TRUE/FALSE) indicating scaling of the genotype dataset. |
asym.pval |
Indicates Monte Carlo approximation for p-values. Default: FALSE. |
comb.test |
Statistical test for combining p-values. |
penalty |
Value of |
verbose |
Indicates verbosing output. Default: FALSE. |
A list of two: (i) final.pvalue - a final p-value across all studies; (ii) pvalueList - p-values for each study;
A list of two: (i) final.pvalue - a final p-value across all studies; (ii) pvalueList - p-values for each study;
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 | data1 <- data.matrix(read.table(system.file("extdata/phengen2.dat",
package="rqt"), skip=1))
pheno <- data1[,1]
geno <- data1[, 2:dim(data1)[2]]
colnames(geno) <- paste(seq(1, dim(geno)[2]))
geno.obj <- SummarizedExperiment(geno)
obj1 <- rqt(phenotype=pheno, genotype=geno.obj)
data2 <- data.matrix(read.table(system.file("extdata/phengen3.dat",
package="rqt"), skip=1))
pheno <- data2[,1]
geno <- data2[, 2:dim(data2)[2]]
colnames(geno) <- paste(seq(1, dim(geno)[2]))
geno.obj <- SummarizedExperiment(geno)
obj2 <- rqt(phenotype=pheno, genotype=geno.obj)
data3 <- data.matrix(read.table(system.file("extdata/phengen.dat",
package="rqt"), skip=1))
pheno <- data3[,1]
geno <- data3[, 2:dim(data3)[2]]
colnames(geno) <- paste(seq(1, dim(geno)[2]))
geno.obj <- SummarizedExperiment(geno)
obj3 <- rqt(phenotype=pheno, genotype=geno.obj)
res.meta <- geneTestMeta(list(obj1, obj2, obj3))
print(res.meta)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.