Description Usage Arguments Value Examples
Calculates a fraction of expressed cells per gene per cell type
1 2 3 4 5 6 7 | buildCellTypeIndex(object = NULL, cell_type_column = "cell_type1")
buildCellTypeIndex.SCESet(object, cell_type_column)
## S4 method for signature 'SingleCellExperiment'
buildCellTypeIndex(object = NULL,
cell_type_column = "cell_type1")
|
object |
object of SingleCellExperiment class |
cell_type_column |
column name in the colData slot of the object SingleCellExperiment containing the cell classification information |
a 'data.frame' containing calculated gene index
1 2 3 4 5 6 7 8 9 10 11 12 | library(SingleCellExperiment)
sce <- SingleCellExperiment(assays = list(normcounts = as.matrix(yan)), colData = ann)
# this is needed to calculate dropout rate for feature selection
# important: normcounts have the same zeros as raw counts (fpkm)
counts(sce) <- normcounts(sce)
logcounts(sce) <- log2(normcounts(sce) + 1)
# use gene names as feature symbols
rowData(sce)$feature_symbol <- rownames(sce)
isSpike(sce, 'ERCC') <- grepl('^ERCC-', rownames(sce))
# remove features with duplicated names
sce <- sce[!duplicated(rownames(sce)), ]
index <- buildCellTypeIndex(sce)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.