findCellType: Find cell types associated with a given gene list

Description Usage Arguments Value Examples

Description

Calculates p-values of a log-likelihood of a list of genes to be associated with each cell type. Log-likelihood is based on gene expression values.

Usage

1
2
3
4
5
6
findCellType(gene_index = NULL, gene_list = NULL)

findCellType.data.frame(gene_index, gene_list)

## S4 method for signature 'data.frame'
findCellType(gene_index = NULL, gene_list = NULL)

Arguments

gene_index

a data.frame with cell types in columns and genes in rows

gene_list

genes that need to be searched in the gene_index

Value

a named numeric vector containing p-values

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
library(SingleCellExperiment)
sce <- SingleCellExperiment(assays = list(normcounts = as.matrix(yan)), colData = ann)
# this is needed to calculate dropout rate for feature selection
# important: normcounts have the same zeros as raw counts (fpkm)
counts(sce) <- normcounts(sce)
logcounts(sce) <- log2(normcounts(sce) + 1)
# use gene names as feature symbols
rowData(sce)$feature_symbol <- rownames(sce)
isSpike(sce, 'ERCC') <- grepl('^ERCC-', rownames(sce))
# remove features with duplicated names
sce <- sce[!duplicated(rownames(sce)), ]
index <- buildCellTypeIndex(sce)
res <- findCellType(index, gene_list = c('SOX6', 'SNAI3'))

scfind documentation built on April 28, 2020, 7:01 p.m.