Description Usage Arguments Details Value Author(s) References Examples
View source: R/calcGeneSetStat.R
Calculates the NGSk (NTk-like) statistics with gene label permutation and the corresponding p-values and q-values for each selected pathway.
1 2 | calculate.NGSk(statV, gsList, nsim = 1000, verbose = FALSE,
alwaysUseRandomPerm = FALSE)
|
statV |
a numeric vector of test statistic (not p-values) for each individual probe/gene |
gsList |
a list containing three vectors from the output of
the |
nsim |
an integer indicating the number of permutations to use |
verbose |
a boolean to indicate whether to print debugging messages to the R console |
alwaysUseRandomPerm |
a boolean to indicate whether the algorithm
can use complete permutations for cases where |
This function is a generalized version of NTk calculations;
calculate.NTk
calls this function internally. To use this
function, the user must specify a vector of test statistics (e.g.,
t-statistic, Wilcoxon). Pathways from this function can be ranked
with rankPathways.NGSk
or with rankPathways
when
combined with results from another pathway analysis algorithm (e.g.,
calculate.NEk
).
A list containing
ngs |
number of gene sets |
nsim |
number of permutations performed |
t.set |
a numeric vector of Tk/Ek statistics |
t.set.new |
a numeric vector of NTk/NEk statistics |
p.null |
the proportion of nulls |
p.value |
a numeric vector of p-values |
q.value |
a numeric vector of q-values |
Lu Tian, Peter Park, and Weil Lai
Tian L., Greenberg S.A., Kong S.W., Altschuler J., Kohane I.S., Park P.J. (2005) Discovering statistically significant pathways in expression profiling studies. Proceedings of the National Academy of Sciences of the USA, 102, 13544-9.
http://www.pnas.org/cgi/doi/10.1073/pnas.0506577102
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 | ## Load in filtered, expression data
data(MuscleExample)
## Prepare the pathways to analyze
probeID <- rownames(tab)
gsList <- selectGeneSets(G, probeID, 20, 500)
nsim <- 1000
ngroups <- 2
verbose <- TRUE
weightType <- "constant"
methodName <- "NGSk"
npath <- 25
allpathways <- FALSE
annotpkg <- "hgu133a.db"
statV <- calcTStatFast(tab, phenotype, ngroups)$tstat
res.NGSk <- calculate.NGSk(statV, gsList, nsim, verbose)
## Summarize top pathways from NGSk
res.pathways.NGSk <-
rankPathways.NGSk(res.NGSk, G, gsList, methodName, npath)
print(res.pathways.NGSk)
## Get more information about the probe sets' means and other statistics
## for the top pathway in res.pathways.NGSk
gpsList <-
getPathwayStatistics.NGSk(statV, probeID, G, res.pathways.NGSk$IndexG,
FALSE, annotpkg)
print(gpsList[[1]])
## Write table of top-ranked pathways and their associated probe sets to
## HTML files
parameterList <-
list(nprobes = nrow(tab), nsamples = ncol(tab),
phenotype = phenotype, ngroups = ngroups,
minNPS = 20, maxNPS = 500, ngs = res.NGSk$ngs,
nsim.NGSk = res.NGSk$nsim,
annotpkg = annotpkg, npath = npath, allpathways = allpathways)
writeSP(res.pathways.NGSk, gpsList, parameterList, tempdir(),
"sigPathway_cNGSk", "TopPathwaysTable.html")
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.