Nothing
library(trena)
library(RUnit)
#----------------------------------------------------------------------------------------------------
printf <- function(...) print(noquote(sprintf(...)))
#----------------------------------------------------------------------------------------------------
runTests <- function()
{
test_BayesSpikeSolverConstructor()
test_ampAD.mef2c.154tfs.278samples.bayesSpike()
test_nOrderings()
} # runTests
#----------------------------------------------------------------------------------------------------
test_BayesSpikeSolverConstructor <- function()
{
printf("--- test_BayesSpikeSolverConstructor")
if(!interactive()) return()
mtx <- matrix(1:9,nrow=3)
rownames(mtx) <- c("gene1","gene2","gene3")
solver <- BayesSpikeSolver(mtx,targetGene = "gene1",
candidateRegulators = c("gene2","gene3"))
checkEquals(class(solver)[1], "BayesSpikeSolver")
checkTrue(all(c("BayesSpikeSolver", "Solver") %in% is(solver)))
} # test_BayesSpikeSolverConstructor
#----------------------------------------------------------------------------------------------------
test_ampAD.mef2c.154tfs.278samples.bayesSpike <- function()
{
printf("--- test_ampAD.mef2c.154tfs.278samples.bayesSpike")
if(!interactive()) return()
set.seed(12415)
load(system.file(package="trena", "extdata/ampAD.154genes.mef2cTFs.278samples.RData"))
mtx.asinh <- asinh(mtx.sub)
target.gene <- "MEF2C"
tfs <- setdiff(rownames(mtx.asinh), "MEF2C")
#print(fivenum(mtx.asinh) # [1] 0.000000 1.327453 3.208193 4.460219 7.628290)
bayes.solver <- BayesSpikeSolver(mtx.asinh,target.gene,tfs)
tbl <- run(bayes.solver)
tbl.trimmed <- subset(tbl, abs(beta) > 0.1 & pval < 0.01)
#betas <- tbl.trimmed$beta
#big.abs.betas <- betas[abs(betas) > 1]
#checkTrue(length(big.abs.betas) > 20)
# Check number of results and correlation of results
checkTrue(nrow(tbl.trimmed) == 12)
} # test_ampAD.mef2c.154tfs.278samples.bayesSpike
#----------------------------------------------------------------------------------------------------
test_nOrderings <- function()
{
printf("--- test_nOrderings")
if(!interactive()) return()
set.seed(12415)
load(system.file(package="trena", "extdata/ampAD.154genes.mef2cTFs.278samples.RData"))
mtx.asinh <- asinh(mtx.sub)
target.gene <- "MEF2C"
tfs <- setdiff(rownames(mtx.asinh), "MEF2C")
#print(fivenum(mtx.asinh) # [1] 0.000000 1.327453 3.208193 4.460219 7.628290)
# Use 100 orderings instead of 10
bayes.solver <- BayesSpikeSolver(mtx.asinh,target.gene,tfs,nOrderings = 100)
tbl <- run(bayes.solver)
tbl.trimmed <- subset(tbl, abs(beta) > 0.1 & pval < 0.01)
#betas <- tbl.trimmed$beta
#big.abs.betas <- betas[abs(betas) > 1]
#checkTrue(length(big.abs.betas) > 20)
# Check number of results
checkTrue(nrow(tbl.trimmed) == 10)
} # test_nOrderings
#----------------------------------------------------------------------------------------------------
if(!interactive()) runTests()
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.