ADMMc: Penalized precision matrix estimation via ADMM (c++)

Description Usage Arguments Details Value Author(s) References

Description

Penalized precision matrix estimation using the ADMM algorithm

Usage

1
2
3
ADMMc(S, initOmega, initZ, initY, lam, alpha = 1, diagonal = FALSE,
  rho = 2, mu = 10, tau_inc = 2, tau_dec = 2, crit = "ADMM",
  tol_abs = 1e-04, tol_rel = 1e-04, maxit = 10000L)

Arguments

S

pxp sample covariance matrix (denominator n).

initOmega

initialization matrix for Omega

initZ

initialization matrix for Z

initY

initialization matrix for Y

lam

postive tuning parameter for elastic net penalty.

alpha

elastic net mixing parameter contained in [0, 1]. 0 = ridge, 1 = lasso. Defaults to alpha = 1.

diagonal

option to penalize the diagonal elements of the estimated precision matrix (Ω). Defaults to FALSE.

rho

initial step size for ADMM algorithm.

mu

factor for primal and residual norms in the ADMM algorithm. This will be used to adjust the step size rho after each iteration.

tau_inc

factor in which to increase step size rho.

tau_dec

factor in which to decrease step size rho.

crit

criterion for convergence (ADMM or loglik). If crit = loglik then iterations will stop when the relative change in log-likelihood is less than tol.abs. Default is ADMM and follows the procedure outlined in Boyd, et al.

tol_abs

absolute convergence tolerance. Defaults to 1e-4.

tol_rel

relative convergence tolerance. Defaults to 1e-4.

maxit

maximum number of iterations. Defaults to 1e4.

Details

For details on the implementation of 'ADMMsigma', see the vignette https://mgallow.github.io/ADMMsigma/.

Value

returns list of returns which includes:

Iterations

number of iterations.

lam

optimal tuning parameters.

alpha

optimal tuning parameter.

Omega

estimated penalized precision matrix.

Z2

estimated Z matrix.

Y

estimated Y matrix.

rho

estimated rho.

Author(s)

Matt Galloway gall0441@umn.edu

References


ADMMsigma documentation built on May 2, 2019, 6:23 a.m.