CVP_RIDGE: Parallel Ridge CV (uses CVP_RIDGEc)

Description Usage Arguments Value

Description

Parallel implementation of cross validation for RIDGEsigma.

Usage

1
2
CVP_RIDGE(X = NULL, lam = 10^seq(-2, 2, 0.1), K = 5, cores = 1,
  trace = c("none", "progress", "print"))

Arguments

X

nxp data matrix. Each row corresponds to a single observation and each column contains n observations of a single feature/variable.

lam

positive tuning parameters for ridge penalty. If a vector of parameters is provided, they should be in increasing order. Defaults to grid of values 10^seq(-2, 2, 0.1).

K

specify the number of folds for cross validation.

cores

option to run CV in parallel. Defaults to cores = 1.

trace

option to display progress of CV. Choose one of progress to print a progress bar, print to print completed tuning parameters, or none.

Value

returns list of returns which includes:

lam

optimal tuning parameter.

min.error

minimum average cross validation error for optimal parameters.

avg.error

average cross validation error across all folds.

cv.error

cross validation errors (negative validation likelihood).


ADMMsigma documentation built on May 2, 2019, 6:23 a.m.