CVP_ADMMc: CV (no folds) ADMM penalized precision matrix estimation...

Description Usage Arguments Value

Description

Cross validation (no folds) function for ADMMsigma. This function is to be used with CVP_ADMM.

Usage

1
2
3
4
CVP_ADMMc(n, S_train, S_valid, lam, alpha, diagonal = FALSE, rho = 2,
  mu = 10, tau_inc = 2, tau_dec = 2, crit = "ADMM", tol_abs = 1e-04,
  tol_rel = 1e-04, maxit = 10000L, adjmaxit = 10000L,
  crit_cv = "loglik", start = "warm", trace = "progress")

Arguments

n

sample size for X_valid (used to calculate crit_cv)

S_train

pxp sample covariance matrix for training data (denominator n).

S_valid

pxp sample covariance matrix for validation data (denominator n).

lam

positive tuning parameters for elastic net penalty. If a vector of parameters is provided, they should be in increasing order.

alpha

elastic net mixing parameter contained in [0, 1]. 0 = ridge, 1 = lasso. If a vector of parameters is provided, they should be in increasing order.

diagonal

option to penalize the diagonal elements of the estimated precision matrix (Ω). Defaults to FALSE.

rho

initial step size for ADMM algorithm.

mu

factor for primal and residual norms in the ADMM algorithm. This will be used to adjust the step size rho after each iteration.

tau_inc

factor in which to increase step size rho

tau_dec

factor in which to decrease step size rho

crit

criterion for convergence (ADMM or loglik). If crit = loglik then iterations will stop when the relative change in log-likelihood is less than tol.abs. Default is ADMM and follows the procedure outlined in Boyd, et al.

tol_abs

absolute convergence tolerance. Defaults to 1e-4.

tol_rel

relative convergence tolerance. Defaults to 1e-4.

maxit

maximum number of iterations. Defaults to 1e4.

adjmaxit

adjusted maximum number of iterations. During cross validation this option allows the user to adjust the maximum number of iterations after the first lam tuning parameter has converged (for each alpha). This option is intended to be paired with warm starts and allows for "one-step" estimators. Defaults to 1e4.

crit_cv

cross validation criterion (loglik, penloglik, AIC, or BIC). Defaults to loglik.

start

specify warm or cold start for cross validation. Default is warm.

trace

option to display progress of CV. Choose one of progress to print a progress bar, print to print completed tuning parameters, or none.

Value

cross validation errors (cv_crit)


ADMMsigma documentation built on May 2, 2019, 6:23 a.m.