Nothing
# Prepare input data for alfam2()/ALFAM2mod()
prepDat <- function(dat,
app.mthd.name = 'app.mthd',
incorp.name = 'incorp',
source.name = 'man.source',
app.mthd.levels = list(ts = c('trailing shoe', 'ts', 'sl\u00E6besko'),
bc = c('broadcast', 'bc', 'broadspread', 'bredspredning', 'bredspredt'),
os = c('open slot injection', 'os', 'open-slot injection', 'shallow injection', 'nedf\u00E6ldning i gr\u00E6s'),
cs = c('closed slot injection', 'cs', 'closed-slot injection', 'deep injection', 'nedf\u00E6ldning p\u00E5 sort jord')),
incorp.levels = list(shallow = c('shallow', 'harrow'), deep = c('deep', 'plough', 'plow', 'nedbringning')),
source.levels = list(pig = c('pig', 'swine', 'svin', 'svinegylle')),
warn = TRUE
) {
# Keep track of number of columns to use in returning data
ncc <- ncol(dat)
ndum <- 0
# Application method
if (app.mthd.name %in% names(dat)) {
dat[, app.mthd.name] <- tolower(dat[, app.mthd.name])
# Convert application method values to standards
for (i in 1:length(app.mthd.levels)) {
dat[dat[, app.mthd.name] %in% app.mthd.levels[[i]], app.mthd.name] <- names(app.mthd.levels)[i]
}
# Application method dummy variables
aml <- names(app.mthd.levels)
for (i in aml) {
nn <- paste(app.mthd.name, i, sep = '.')
if (nn %in% names(dat)) {
ncc <- ncc - 1
if (warn) {
warning(paste0('Overwriting column "', nn, '" with dummy variable values.\n It is best to avoid this name in input data.'))
}
}
dat[, nn] <- 1 * (dat[, app.mthd.name] == i)
ndum <- ndum + 1
}
}
# Incorporation
if (incorp.name %in% names(dat)) {
dat[, incorp.name] <- tolower(dat[, incorp.name])
# Replace NA values with 'none'
if (any(is.na(dat[, incorp.name]))) {
dat[is.na(dat[, incorp.name]), incorp.name] <- 'none'
if (warn) {
warning(paste0('Some NA values in incorporation column ', incorp.name, '.\n Replacing all of them with "none".'))
}
}
# Convert incorporation values to standards
for (i in 1:length(incorp.levels)) {
dat[dat[, incorp.name] %in% incorp.levels[[i]], incorp.name] <- names(incorp.levels)[i]
}
# Incorporation dummy variables
il <- names(incorp.levels)
for (i in il) {
nn <- paste(incorp.name, i, sep = '.')
if (nn %in% names(dat)) {
ncc <- ncc - 1
if (warn) {
warning(paste0('Overwriting column "', nn, '" with dummy variable values.\n It is best to avoid this name in input data.'))
}
}
dat[, nn] <- 1 * (dat[, incorp.name] == i)
ndum <- ndum + 1
}
}
# Source
if (source.name %in% names(dat)) {
dat[, source.name] <- tolower(dat[, source.name])
# Convert source values to standards
for (i in 1:length(source.levels)) {
dat[dat[, source.name] %in% source.levels[[i]], source.name] <- names(source.levels)[i]
}
# Source dummy variables
sl <- names(source.levels)
for (i in sl) {
nn <- paste(source.name, i, sep = '.')
if (nn %in% names(dat)) {
ncc <- ncc - 1
if (warn) {
warning(paste0('Overwriting column "', nn, '" with dummy variable values.\nIt is best to avoid this name in input data.'))
}
}
dat[, nn] <- 1 * (dat[, source.name] == i)
ndum <- ndum + 1
}
}
if (ndum == 0) {
if (warn) {
warning('Argument prep.dum = TRUE but there are no variables to convert to dummy variables!\n Ignoring prep.dum = TRUE.')
}
return(NULL)
}
dum <- dat[, 1:ndum + ncc, drop = FALSE]
return(dum)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.