Nothing
## ---- include = FALSE---------------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>"
)
## ----setup--------------------------------------------------------------------
library(ATbounds)
## -----------------------------------------------------------------------------
nsw_treated <- read.table("http://users.nber.org/~rdehejia/data/nsw_treated.txt")
colnames(nsw_treated) <- c("treat","age","edu","black","hispanic",
"married","nodegree","RE75","RE78")
nsw_control <- read.table("http://users.nber.org/~rdehejia/data/nsw_control.txt")
colnames(nsw_control) <- c("treat","age","edu","black","hispanic",
"married","nodegree","RE75","RE78")
## -----------------------------------------------------------------------------
nsw <- rbind(nsw_treated,nsw_control)
attach(nsw)
D <- treat
Y <- (RE78 > 0)
## -----------------------------------------------------------------------------
rps <- rep(mean(D),length(D))
## -----------------------------------------------------------------------------
ate_nsw <- mean(D*Y)/mean(D)-mean((1-D)*Y)/mean(1-D)
print(ate_nsw)
## -----------------------------------------------------------------------------
model <- lm(Y ~ D)
summary(model)
confint(model)
## -----------------------------------------------------------------------------
detach(nsw)
nswre_treated <- read.table("http://users.nber.org/~rdehejia/data/nswre74_treated.txt")
colnames(nswre_treated) <- c("treat","age","edu","black","hispanic",
"married","nodegree","RE74","RE75","RE78")
nswre_control <- read.table("http://users.nber.org/~rdehejia/data/nswre74_control.txt")
colnames(nswre_control) <- c("treat","age","edu","black","hispanic",
"married","nodegree","RE74","RE75","RE78")
nswre <- rbind(nswre_treated,nswre_control)
attach(nswre)
D <- treat
Y <- (RE78 > 0)
X <- cbind(age,edu,black,hispanic,married,nodegree,RE74/1000,RE75/1000)
## -----------------------------------------------------------------------------
rps <- rep(mean(D),length(D))
## -----------------------------------------------------------------------------
ate_nswre <- mean(D*Y)/mean(D)-mean((1-D)*Y)/mean(1-D)
print(ate_nswre)
## -----------------------------------------------------------------------------
model <- lm(Y ~ D)
summary(model)
confint(model)
## -----------------------------------------------------------------------------
bns_nsw <- atebounds(Y, D, X, rps)
## -----------------------------------------------------------------------------
summary(bns_nsw)
## -----------------------------------------------------------------------------
summary(atebounds(Y, D, X, rps, Q = 2))
## -----------------------------------------------------------------------------
summary(atebounds(Y, D, X, rps, Q = 4))
## -----------------------------------------------------------------------------
print(ate_nswre)
## -----------------------------------------------------------------------------
summary(atebounds(Y, D, X, rps))
summary(atebounds(Y, D, X, rps, n_hc = ceiling(length(Y)/5)))
summary(atebounds(Y, D, X, rps, n_hc = ceiling(length(Y)/20)))
## -----------------------------------------------------------------------------
print(bns_nsw)
## -----------------------------------------------------------------------------
bns_nsw_att <- attbounds(Y, D, X, rps)
summary(bns_nsw_att)
## -----------------------------------------------------------------------------
summary(attbounds(Y, D, X, rps, Q = 2))
## -----------------------------------------------------------------------------
summary(attbounds(Y, D, X, rps, Q = 4))
## -----------------------------------------------------------------------------
summary(attbounds(Y, D, X, rps))
summary(attbounds(Y, D, X, rps, n_hc = ceiling(length(Y)/5)))
summary(attbounds(Y, D, X, rps, n_hc = ceiling(length(Y)/20)))
## -----------------------------------------------------------------------------
psid2_control <- read.table("http://users.nber.org/~rdehejia/data/psid2_controls.txt")
colnames(psid2_control) <- c("treat","age","edu","black","hispanic",
"married","nodegree","RE74","RE75","RE78")
psid <- rbind(nswre_treated,psid2_control)
detach(nswre)
attach(psid)
D <- treat
Y <- (RE78 > 0)
X <- cbind(age,edu,black,hispanic,married,nodegree,RE74/1000,RE75/1000)
## -----------------------------------------------------------------------------
rps_sp <- rep(mean(D),length(D))
bns_psid <- atebounds(Y, D, X, rps_sp)
summary(bns_psid)
## -----------------------------------------------------------------------------
summary(atebounds(Y, D, X, rps_sp, Q=1))
## -----------------------------------------------------------------------------
summary(attbounds(Y, D, X, rps_sp))
detach(psid)
## -----------------------------------------------------------------------------
Y <- RHC[,"survival"]
D <- RHC[,"RHC"]
X <- as.matrix(RHC[,-c(1,2)])
## -----------------------------------------------------------------------------
# Logit estimation of propensity score
glm_ps <- stats::glm(D~X,family=binomial("logit"))
ps <- glm_ps$fitted.values
ps_treated <- ps[D==1]
ps_control <- ps[D==0]
# Plotting histograms of propensity scores
df <- data.frame(cbind(D,ps))
colnames(df)<-c("RHC","PS")
df$RHC <- as.factor(df$RHC)
levels(df$RHC) <- c("No RHC (Control)", "RHC (Treated)")
ggplot2::ggplot(df, ggplot2::aes(x=PS, color=RHC, fill=RHC)) +
ggplot2::geom_histogram(breaks=seq(0,1,0.1),alpha=0.5,position="identity")
## -----------------------------------------------------------------------------
# ATT normalized estimation
y1_att <- mean(D*Y)/mean(D)
att_wgt <- ps/(1-ps)
y0_att_num <- mean((1-D)*att_wgt*Y)
y0_att_den <- mean((1-D)*att_wgt)
y0_att <- y0_att_num/y0_att_den
att_ps <- y1_att - y0_att
print(att_ps)
## -----------------------------------------------------------------------------
rps <- rep(mean(D),length(D))
## -----------------------------------------------------------------------------
att_rps <- mean(D*Y)/mean(D) - mean((1-D)*Y)/mean(1-D)
print(att_rps)
## -----------------------------------------------------------------------------
Xunique <- mgcv::uniquecombs(X) # A matrix of unique rows from X
print(c("no. of unique rows:", nrow(Xunique)))
print(c("sample size :", nrow(X)))
## -----------------------------------------------------------------------------
summary(attbounds(Y, D, X, rps))
## ---- eval=FALSE--------------------------------------------------------------
# # Bounding ATT: sensitivity analysis
# # not run to save time
# nhc_set <- c(5, 10, 20)
# results_att <- {}
#
# for (hc in nhc_set){
# nhc <- ceiling(length(Y)/hc)
#
# for (q in c(1,2,3,4)){
# res <- attbounds(Y, D, X, rps, Q = q, n_hc = nhc)
# results_att <- rbind(results_att,c(hc,q,res$est_lb,res$est_ub,res$ci_lb,res$ci_ub))
# }
# }
# colnames(results_att) = c("L","Q","LB","UB","CI-LB","CI-UB")
# print(results_att, digits = 3)
## -----------------------------------------------------------------------------
summary(atebounds(Y, D, X, rps, Q = 1))
## -----------------------------------------------------------------------------
summary(atebounds(Y, D, X, rps, Q = 2))
## -----------------------------------------------------------------------------
summary(atebounds(Y, D, X, rps, Q = 3))
## -----------------------------------------------------------------------------
summary(atebounds(Y, D, X, rps, Q = 4))
## -----------------------------------------------------------------------------
Y <- EFM[,"cesarean"]
D <- EFM[,"monitor"]
X <- as.matrix(EFM[,c("arrest", "breech", "nullipar", "year")])
year <- EFM[,"year"]
## -----------------------------------------------------------------------------
ate_rps <- mean(D*Y)/mean(D) - mean((1-D)*Y)/mean(1-D)
print(ate_rps)
## -----------------------------------------------------------------------------
rps <- rep(mean(D),length(D))
print(rps[1])
## -----------------------------------------------------------------------------
summary(atebounds(Y, D, X, rps, Q = 1, x_discrete = TRUE))
## -----------------------------------------------------------------------------
summary(atebounds(Y, D, X, rps, Q = 2, x_discrete = TRUE))
## -----------------------------------------------------------------------------
summary(atebounds(Y, D, X, rps, Q = 3, x_discrete = TRUE))
## -----------------------------------------------------------------------------
summary(atebounds(Y, D, X, rps, Q = 5, x_discrete = TRUE))
summary(atebounds(Y, D, X, rps, Q = 10, x_discrete = TRUE))
summary(atebounds(Y, D, X, rps, Q = 20, x_discrete = TRUE))
summary(atebounds(Y, D, X, rps, Q = 50, x_discrete = TRUE))
summary(atebounds(Y, D, X, rps, Q = 100, x_discrete = TRUE))
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.