Nothing
if(readline("Clear workspace? [y/N] ") != "y")
stop("Examples not run.")
library("Allspice")
prevopt <- options(); options(digits=3)
set.seed(1)
cat("\nAsset.assemble.Rd\n")
rm(list=setdiff(ls(),"prevopt"))
# Prepare training data.
simu <- bcellALL(200)
materials <- list(title="Simutypes")
materials$dat <- simu$counts
materials$covariates <- simu$metadata[,c("MALE","AGE")]
materials$bits <- simu$metadata[,"SUBTYPE",drop=FALSE]
# Assemble classification asset.
bALL <- asset()
assemble(bALL) <- materials
# Export asset into a new folder.
tpath <- tempfile()
export(bALL, folder = tpath)
# Create a classifier.
cls <- classifier(tpath, verbose = FALSE)
# Classify new samples.
simu <- bcellALL(5)
covariates(cls) <- simu$metadata
profiles(cls) <- simu$counts
primary <- predictions(cls)[[1]]
print(primary[,c("LABEL","PROX","EXCL")])
Sys.sleep(1)
cat("\nAsset.classify.Rd\n")
rm(list=setdiff(ls(),"prevopt"))
# Import ALL subtyping asset.
base <- system.file(package = "Allspice")
folder <- file.path(base, "subtypes")
a <- asset(folder)
# Simulated data.
simu <- bcellALL(5)
# Standardize RNA read counts.
expres <- normalize(a, dat = simu$counts)
expres <- standardize(a, dat = expres)
# Predict categories.
res <- classify(a, dat = expres, covariates = simu$metadata)
print(res[,c("LABEL","PROX","EXCL")])
Sys.sleep(1)
cat("\nAsset.configuration.Rd\n")
rm(list=setdiff(ls(),"prevopt"))
# Change asset configuration.
a <- asset()
print(configuration(a))
configuration(a) <- c(nonzero.min=0, nonzero.ratio=0)
print(configuration(a))
Sys.sleep(1)
cat("\nAsset.export.Rd\n")
rm(list=setdiff(ls(),"prevopt"))
# Import ALL subtyping asset.
base <- system.file(package = "Allspice")
folder <- file.path(base, "subtypes")
a <- asset(folder)
# Export asset into a new folder.
tpath <- tempfile()
fnames <- export(a, folder = tpath)
print(dir(tpath))
Sys.sleep(1)
cat("\nAsset.nomenclature.Rd\n")
rm(list=setdiff(ls(),"prevopt"))
# Import nomenclature from a system file.
base <- system.file(package = "Allspice")
fname <- file.path(base, "subtypes", "nomenclature.txt")
info <- read.delim(fname, stringsAsFactors = FALSE)
# Set ENSEMBLE identities as row names.
rownames(info) <- info$ENSEMBL
info$ENSEMBL <- NULL
print(head(info))
# Create a new asset and set nomenclature.
a <- asset()
nomenclature(a) <- info
# Prepare training data.
simu <- bcellALL(200)
materials <- list(title="Simutypes")
materials$dat <- simu$counts
materials$covariates <- simu$metadata[,c("MALE","AGE")]
materials$bits <- simu$metadata[,"SUBTYPE",drop=FALSE]
# Assemble classification asset.
assemble(a) <- materials
# Check that nomenclature was set.
simu <- bcellALL(5)
expres <- normalize(a, dat = simu$counts)
print(head(simu$counts))
print(head(expres))
Sys.sleep(1)
cat("\nAsset.normalize.Rd\n")
rm(list=setdiff(ls(),"prevopt"))
# Import ALL subtyping asset.
base <- system.file(package = "Allspice")
folder <- file.path(base, "subtypes")
a <- asset(folder)
# Simulated data.
simu <- bcellALL(5)
# Normalize RNA read counts.
expres <- normalize(a, dat = simu$counts)
print(head(simu$counts))
print(head(expres))
Sys.sleep(1)
cat("\nAsset.Rd\n")
rm(list=setdiff(ls(),"prevopt"))
# Set up an ALL subtyping asset.
folder <- system.file("subtypes", package="Allspice")
a <- asset(folder)
Sys.sleep(1)
cat("\nAsset.standardize.Rd\n")
rm(list=setdiff(ls(),"prevopt"))
# Import ALL subtyping asset.
base <- system.file(package = "Allspice")
folder <- file.path(base, "subtypes")
a <- asset(folder)
# Simulated data.
simu <- bcellALL(5)
# Standardize RNA read counts.
expres <- normalize(a, dat = simu$counts)
zscores <- standardize(a, dat = expres)
print(head(simu$counts))
print(head(expres))
print(head(zscores))
Sys.sleep(1)
cat("\nAsset.visuals.Rd\n")
rm(list=setdiff(ls(),"prevopt"))
# Create a new asset and set nomenclature.
a <- asset()
# Set category labels with automatic colors.
labels <- paste("Category", 1:8)
names(labels) <- paste0("cat", 1:8)
visuals(a) <- labels
print(a@categories)
# Add color information.
info <- data.frame(stringsAsFactors = FALSE,
LABEL = labels, COLOR = "red")
rownames(info) <- names(labels)
visuals(a) <- info
print(a@categories)
Sys.sleep(1)
cat("\nbcellALL.Rd\n")
rm(list=setdiff(ls(),"prevopt"))
# Simulate B-cell ALL samples.
simu <- bcellALL(5)
print(head(simu$counts))
print(simu$metadata)
Sys.sleep(1)
cat("\nClassifier.covariates.Rd\n")
rm(list=setdiff(ls(),"prevopt"))
# Simulated data.
simu <- bcellALL(5)
# Predict subtypes without covariates.
cls <- classifier(verbose = FALSE)
profiles(cls) <- simu$counts
primary <- predictions(cls)[[1]]
print(primary[,c("LABEL","PROX","EXCL")])
# Predict subtypes with covariates.
cls <- classifier(verbose = FALSE)
covariates(cls) <- simu$metadata
profiles(cls) <- simu$counts
primary <- predictions(cls)[[1]]
print(primary[,c("LABEL","PROX","EXCL")])
Sys.sleep(1)
cat("\nClassifier.information.Rd\n")
rm(list=setdiff(ls(),"prevopt"))
# Show the contents of the b-cell ALL classifier.
cls <- classifier(verbose=FALSE)
info <- information(cls)
print(info$covariates)
print(info$configuration)
print(head(info$categories))
print(tail(info$categories))
Sys.sleep(1)
cat("\nClassifier.predictions.Rd\n")
rm(list=setdiff(ls(),"prevopt"))
# Simulated data.
simu <- bcellALL(5)
# Predict subtypes.
cls <- classifier(verbose = FALSE)
covariates(cls) <- simu$metadata
profiles(cls) <- simu$counts
pred <- predictions(cls)
print(pred[[1]][,c("LABEL","PROX","EXCL")])
print(pred[[2]][,c("LABEL","PROX","EXCL")])
print(pred[[3]][,c("LABEL","PROX","EXCL")])
Sys.sleep(1)
cat("\nClassifier.profiles.Rd\n")
rm(list=setdiff(ls(),"prevopt"))
# Simulated data.
simu <- bcellALL(5)
# Predict subtypes.
cls <- classifier(verbose = FALSE)
covariates(cls) <- simu$metadata
profiles(cls) <- simu$counts
primary <- predictions(cls)[[1]]
print(primary[,c("LABEL","PROX","EXCL")])
Sys.sleep(1)
cat("\nClassifier.Rd\n")
rm(list=setdiff(ls(),"prevopt"))
# Set up an ALL classifier object.
cls <- classifier()
Sys.sleep(1)
cat("\nClassifier.report.Rd\n")
rm(list=setdiff(ls(),"prevopt"))
# Simulated data.
simu <- bcellALL(5)
keys <- colnames(simu$counts)
# Predict subtypes.
cls <- classifier(verbose = FALSE)
covariates(cls) <- simu$metadata
profiles(cls) <- simu$counts
# Show visual report by name.
dev.new()
report(cls, name = keys[3])
# Show visual report by sample index.
dev.new()
report(cls, name = 3)
Sys.sleep(1)
cat("\nClassifier.scores.Rd\n")
rm(list=setdiff(ls(),"prevopt"))
# Simulated data.
simu <- bcellALL(5)
# Predict subtypes.
cls <- classifier(verbose = FALSE)
covariates(cls) <- simu$metadata
profiles(cls) <- simu$counts
z <- scores(cls)
print(z[[1]][,1:5])
print(z[[2]][,1:5])
print(z[[3]][,1:5])
Sys.sleep(1)
options(prevopt)
cat("\nAll examples completed.\n\n")
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.