Nothing
context("predict.R")
test_that("predict.bas.lm", {
data("Hald")
hald_gprior <- bas.lm(Y ~ ., data = Hald, alpha = 13,
prior = "g-prior")
hald_pred_new <- predict(hald_gprior, newdata = Hald, estimator = "BPM",
se.fit = TRUE)
expect_null(plot(confint(hald_pred_new, parm = "mean")))
hald_pred <- predict(hald_gprior, estimator = "BMA",
se.fit = TRUE)
expect_null(plot(confint(hald_pred)))
hald_pred_new <- predict(hald_gprior, newdata = Hald,
estimator = "BMA",
se.fit = TRUE)
expect_equal(hald_pred_new$fit, hald_pred$fit)
hald_pred <- predict(hald_gprior, estimator = "HPM",
se.fit = TRUE)
expect_null(plot(confint(hald_pred)))
hald_pred_new <- predict(hald_gprior, newdata = Hald,
estimator = "HPM",
se.fit = TRUE)
expect_equal(hald_pred_new$fit, hald_pred$fit)
hald_pred_new <- predict(hald_gprior, newdata = Hald[1,],
estimator = "HPM",
se.fit = TRUE)
expect_equivalent(hald_pred_new$fit, hald_pred$fit[1])
hald_pred_new <- predict(hald_gprior, newdata = Hald, estimator = "BPM",
se.fit = FALSE)
expect_warning(confint(hald_pred_new ))
})
test_that("predict.bas.glm", {
data("Pima.tr", package="MASS")
data("Pima.te", package="MASS")
pima_gprior <- bas.glm(type ~ ., data = Pima.tr,
betaprior = g.prior(g=as.numeric(nrow(Pima.tr))),
family=binomial())
pima_pred <- predict(pima_gprior,
estimator = "HPM",
se.fit = FALSE)
expect_warning(confint(pima_pred))
# should not error
expect_error(predict(pima_gprior,
estimator = "HPM",
se.fit = TRUE))
# expect_null(plot(confint(pima_pred, parm = "mean")))
# should not error
expect_error( predict(hald_gprior, newdata=Pima.te, estimator = "HPM",
se.fit = TRUE))
#expect_null(plot(confint(pima_pred)))
})
# GitHub issue #68
# a model with one predictor variable and se.fit=TRUE
test_that("se.fit with 1 variable", {
data("Hald")
hald.gprior = bas.lm(Y ~ X2, data=Hald, alpha=13, prior="g-prior")
expect_no_error(predict(hald.gprior,
newdata=Hald, estimator="BPM", se.fit=TRUE))
expect_no_error(predict(hald.gprior,
newdata=Hald, estimator="HPM", se.fit=TRUE))
expect_no_error(predict(hald.gprior,
newdata=Hald, estimator="MPM", se.fit=TRUE))
})
# GitHub issue #70 and #74
test_that("bas.lm using truncated priors includes models with prior prob 0", {
data("bodyfat")
bas_mod <- bas.lm(Bodyfat ~.,data = bodyfat[1:14,], method = 'BAS', modelprior = tr.poisson(2, 3))
expect_no_error(predict(bas_mod,newdata = bodyfat[15:20,], se.fit = T, estimator = 'HPM'))
expect_no_error(predict(bas_mod,newdata = bodyfat[15:20,], se.fit = T, estimator = 'BPM'))
expect_no_error(predict(bas_mod,newdata = bodyfat[15:20,], se.fit = T, estimator = 'MPM'))
expect_no_error(predict(bas_mod,newdata = bodyfat[15:20,], se.fit = T, estimator = 'BMA'))
bas_mod <- bas.lm(Bodyfat ~.,data = bodyfat[1:14,], method = 'deterministic', modelprior = tr.poisson(2, 3))
expect_no_error(predict(bas_mod,newdata = bodyfat[15:20,], se.fit = T, estimator = 'HPM'))
expect_no_error(predict(bas_mod,newdata = bodyfat[15:20,], se.fit = T, estimator = 'BPM'))
expect_no_error(predict(bas_mod,newdata = bodyfat[15:20,], se.fit = T, estimator = 'MPM'))
expect_no_error(predict(bas_mod,newdata = bodyfat[15:20,], se.fit = T, estimator = 'BMA'))
bas_mod <- bas.lm(Bodyfat ~.,data = bodyfat[1:14,], method = 'MCMC', modelprior = tr.poisson(2, 3))
expect_no_error(predict(bas_mod,newdata = bodyfat[15:20,], se.fit = T, estimator = 'HPM'))
expect_no_error(predict(bas_mod,newdata = bodyfat[15:20,], se.fit = T, estimator = 'BPM'))
expect_no_error(predict(bas_mod,newdata = bodyfat[15:20,], se.fit = T, estimator = 'MPM'))
expect_no_error(predict(bas_mod,newdata = bodyfat[15:20,], se.fit = T, estimator = 'BMA'))
bas_mod <- bas.lm(Bodyfat ~.,data = bodyfat[1:14,], method = 'MCMC+BAS', modelprior = tr.poisson(2, 3))
expect_no_error(predict(bas_mod,newdata = bodyfat[15:20,], se.fit = T, estimator = 'HPM'))
expect_no_error(predict(bas_mod,newdata = bodyfat[15:20,], se.fit = T, estimator = 'BPM'))
expect_no_error(predict(bas_mod,newdata = bodyfat[15:20,], se.fit = T, estimator = 'MPM'))
expect_no_error(predict(bas_mod,newdata = bodyfat[15:20,], se.fit = T, estimator = 'BMA'))
})
# github issue #74
test_that("bas.glm using truncated priors includes models with prior prob 0", {
data("Pima.tr", package="MASS")
data("Pima.te", package="MASS")
bas_mod <- bas.glm(type ~ ., data = Pima.tr, subset = 1:5, method = 'BAS',
modelprior = tr.poisson(2,2),
betaprior = g.prior(g=as.numeric(nrow(Pima.tr))),
family=binomial())
expect_no_error(sum(bas_mod$postprobs == 1.0))
# github issue ??
# expect_no_error(predict(bas_mod,newdata = Pima.tr[15:20,], se.fit = T, estimator = 'HPM'))
# expect_no_error(predict(bas_mod,newdata = Pima.tr[15:20,], se.fit = T, estimator = 'BPM'))
# expect_no_error(predict(bas_mod,newdata = Pima.tr[15:20,], se.fit = T, estimator = 'MPM'))
# expect_no_error(predict(bas_mod,newdata = Pima.tr[15:20,], se.fit = T, estimator = 'BMA'))
#expect_null(plot(confint(pima_pred)))
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.