Description Usage Arguments Value References See Also Examples
This function runs Metropolis-Hasting algorithm which is given setting prior and data.This algorithm starts storing coefficients when it runs halfway,so we use second halves of coefficients compute Rhat to check convergence.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 |
prior |
prior=(n0,alpha,L) where alpha is a Poisson parameter,n0 is upper bound of alpha L can be every number which is bigger than one. |
ages |
Range of ages. |
years |
Range of years. |
disease |
Disease matrix. |
population |
Population matrix. |
Iterations |
Iterations of chain. |
n_chain |
Number of Markov chain. |
n_cluster |
This parameter means number of cores, five cores is recommended.(default: n_cluster=1). |
nn |
The parameter nn is lower bound of alpha. |
interval |
Each hundreds save one coefficient. |
RJC |
Control parameter for transfer dimension. |
seed |
Set seed yes or not. |
set |
Choose seed.(defaults:set=1) |
double |
If R.hat >1.1 then double the iterations of times. |
This function will return Bayesian estimate of incidence,Stored parameters,posterior mean,posterior max and table.
Fhat |
Bayesian estimate of incidence. |
chain |
Bayesian estimate of posterior p-value mean. |
maxchain |
Bayesian estimate of posterior p-value max. |
store_coefficients |
Two dimensional Bernstein coefficients. |
output |
When M-H algorithm ends,contruct the table which contains norm,mean of Fhat,maximum of Fhat,R.hat,iterations,P-value and elasped time. |
Li-Chu Chien,Yuh-Jenn Wu,Chao A. Hsiung,Lu-Hai Wang,I-Shou Chang(2015).Smoothed Lexis Diagrams With Applications to Lung and Breast Cancer Trends in Taiwan,Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(511), pages 1000-1012, September.
Other Bayesain estimate:
BP2D_coef()
,
BP2D_table()
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 | # ---------------------------------------- #
library(BayesBP)
ages<-35:85
years<-1988:2007
prior<-c(10,5,2)
data(simulated_data_1)
disease<-simulated_data_1$disease
population<-simulated_data_1$population
result<-BP2D(prior,ages,years,disease,population)
# ---------------------------------------- #
# Bernstein basis
basis<-BPbasis(ages,years,10)
pdbasis1<-PD_BPbasis(ages,years,10,by = 1)
pdbasis2<-PD_BPbasis(ages,years,10,by = 2)
# Bernstein polynomial
coef<-result$store_coefficients$chain_1[[1]]
BPFhat(coef,ages,years,basis)
PD_BPFhat(coef,ages,years,pdbasis1,by = 1)
PD_BPFhat(coef,ages,years,pdbasis2,by = 2)
# Credible interval
Credible_interval(result)
PD_Credible_interval(result,by = 1)
PD_Credible_interval(result,by = 2)
# ---------------------------------------- #
# Given four prior set
ages<-35:85
years<-1988:2007
data(simulated_data_2)
disease<-simulated_data_2$disease
population<-simulated_data_2$population
p<-expand.grid(n0=c(10,20),alpha=c(5,10),LL=c(2,4))
prior_set<-p[p$n0==p$alpha*2,]
result_list<-paste0('result',1:nrow(prior_set))
for (i in seq_len(nrow(prior_set))) {
prior<-prior_set[i,]
assign(result_list[i],BP2D(prior,ages,years,disease,population))
write.BP(get(result_list[i]),sprintf('%s.xlsx',result_list[i]))
}
tab<-BP2D_table(result_list)
write.BPtable(tab,'result_table.xlsx')
# ---------------------------------------- #
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.