Nothing
#' @title Set initial values of scale parameter and modal ranking
#'
#' @description
#' Set initial values used by the Metropolis-Hastings algorithm.
#'
#'
#' @param rho_init Numeric vector specifying the initial value of the latent
#' consensus ranking \eqn{\rho}. Defaults to NULL, which means that the
#' initial value is set randomly. If `rho_init` is provided when
#' `n_clusters > 1`, each mixture component \eqn{\rho_{c}} gets the same
#' initial value.
#'
#'
#' @param alpha_init Numeric value specifying the initial value of the scale
#' parameter \eqn{\alpha}. Defaults to `1`. When `n_clusters > 1`,
#' each mixture component \eqn{\alpha_{c}} gets the same initial value. When
#' chains are run in parallel, by providing an argument `cl = cl`, then
#' `alpha_init` can be a vector of of length `length(cl)`, each
#' element of which becomes an initial value for the given chain.
#'
#'
#' @return An object of class `"BayesMallowsInitialValues"`, to be
#' provided to the `initial_values` argument of [compute_mallows()] or
#' [compute_mallows_mixtures()].
#'
#' @export
#'
#' @family preprocessing
#'
set_initial_values <- function(rho_init = NULL, alpha_init = 1) {
if (!is.null(rho_init)) {
if (!validate_permutation(rho_init)) stop("rho_init must be a proper permutation")
if (!(sum(is.na(rho_init)) == 0)) stop("rho_init cannot have missing values")
rho_init <- matrix(rho_init, ncol = 1)
}
ret <- as.list(environment())
class(ret) <- "BayesMallowsInitialValues"
ret
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.